$L^p$-improving properties of X-ray like transforms

Type: Article

Publication Date: 2006-01-01

Citations: 10

DOI: https://doi.org/10.4310/mrl.2006.v13.n5.a9

Abstract

The purpose of this paper is to prove essentially sharp L-L estimates for nondegenerate one-dimensional averaging operators which generalize the classical X-ray transform. Let X and Y be C∞ manifolds with dimX =: dX and dimY =: dY ; we assume that X and Y are equipped with measures of smooth density and that dY > dX . Now let M be a smooth (dY + 1)-dimensional submanifold of X × Y (again equipped with a measure) such that the natural projections πX : M → X and πY : M → Y have everywhere surjective differential maps. For y ∈ Y , the set γy := {x ∈ X | (x, y) ∈ M } is a curve in X. As will be shown in the next section, there is an induced Radon-like operator R which averages functions of X over the curves γy. The focus of this paper is to study the L-boundedness of that operator. For simplicity, the question is posed as a bilinear one: for which p, q′ does there exist a finite constant Cp,q′ such ∣∣∣∣∫ fX(πX(m))fY (πY (m))dm∣∣∣∣ ≤ Cp,q′ (∫ |fX(x)|pdx) 1 p (∫ |fY (y)|q′dy) 1 q′

Locations

  • Mathematical Research Letters - View - PDF

Similar Works

Action Title Year Authors
+ $L^p$ improving multilinear Radon-like transforms 2017 Betsy Stovall
+ $L^p$ improving multilinear Radon-like transforms 2017 Betsy Stovall
+ PDF Chat $L^p$ improving multilinear Radon-like transforms 2011 Betsy Stovall
+ Mapping properties of certain averaging operators 2002 M. Burak Erdoğan
+ Some \(l^p\)-Improving Bounds For Radon-Like Transforms 2019 Dominick Villano
+ PDF Chat Sharp Sobolev regularity of restricted X-ray transforms 2023 Hyerim Ko
Sanghyuk Lee
Sewook Oh
+ Sharp <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mtext>–</mml:mtext><mml:msup><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math> estimates for generalized k-plane transforms 2007 Philip T. Gressman
+ Sharp Sobolev regularity of restricted X-ray transforms 2021 Hyerim Ko
Sanghyuk Lee
Sewook Oh
+ PDF Chat Sobolev improving for averages over curves in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:math> 2021 David Beltran
Shaoming Guo
Jonathan Hickman
Andreas Seeger
+ Sobolev improving for averages over curves in $\mathbb{R}^4$ 2021 David Beltran
Shaoming Guo
Jonathan Hickman
Andreas Seeger
+ PDF Chat Classical and microlocal analysis of the x-ray transform on Anosov manifolds 2021 Sébastien Gouëzel
Thibault Lefeuvre
+ Sobolev improving for averages over curves in $\mathbf{R^4}$ 2021 David Beltrán
Shaoming Guo
Jonathan E. Hickman
Andreas Seeger
+ PDF Chat Geometric averaging operators and nonconcentration inequalities 2022 Philip T. Gressman
+ PDF Chat $L^{p}$ estimates for the $X$-ray transform 1983 S.W. Drury
+ PDF Chat Estimates for the $X$-ray transform restricted to 2-manifolds 2010 M. Burak Erdoğan
Richard Oberlin
+ The Calderón reproducing formula, windowed X-ray transforms, and radon transforms in LP-spaces 1998 Boris Rubin
+ PDF Chat Abel transforms with low regularity with applications to x-ray tomography on spherically symmetric manifolds 2017 Maarten V. de Hoop
Joonas Ilmavirta
+ PDF Chat L<sup>p</sup>type mapping estimates for oscillatory integrals in higher dimensions 2006 G. Sampson
+ $L^p$-improving estimates for Radon-like operators and the Kakeya-Brascamp-Lieb inequality 2020 Philip T. Gressman
+ X-ray transform on Sobolev spaces 2020 Vladimir Sharafutdinov

Works That Cite This (9)

Action Title Year Authors
+ Sharp <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mtext>–</mml:mtext><mml:msup><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math> estimates for generalized k-plane transforms 2007 Philip T. Gressman
+ PDF Chat Mixed-norm estimates for a class of nonisotropic directional maximal operators and Hilbert transforms 2008 Neal Bez
+ PDF Chat Nonisotropic dilations and the method of rotations with weight 2011 Shūichi Satō
+ Nonisotropic operators arising in the method of rotations 2007 Neal Bez
+ PDF Chat Estimates for the $X$-ray transform restricted to 2-manifolds 2010 M. Burak Erdoğan
Richard Oberlin
+ PDF Chat A note on restricted X-ray transforms 2008 Norberto Laghi
+ Uniform <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msubsup><mml:mtext>–</mml:mtext><mml:msubsup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msubsup></mml:math> improving for dilated averages over … 2015 Jonathan Hickman
+ Uniform $L_x^p - L^q_{x,r}$ Improving for Dilated Averages over Polynomial Curves 2015 Jonathan Hickman
+ Sharp $L^p$-$L^q$ estimates for generalized $k$-plane transforms 2007 Philip T. Gressman