Coherent transport in graphene nanoconstrictions

Type: Article

Publication Date: 2006-11-14

Citations: 175

DOI: https://doi.org/10.1103/physrevb.74.195417

Abstract

We study the effect of a structural nanoconstriction on the coherent transport properties of otherwise ideal zig-zag-edged infinitely long graphene ribbons. The electronic structure is calculated with the standard one-orbital tight-binding model and the linear conductance is obtained using the Landauer formula. We find that, since the zero-bias current is carried in the bulk of the ribbon, this is very robust with respect to a variety of constriction geometries and edge defects. In contrast, the curve of zero-bias conductance versus gate voltage departs from the $(2n+1) e^2/h$ staircase of the ideal case as soon as a single atom is removed from the sample. We also find that wedge-shaped constrictions can present non-conducting states fully localized in the constriction close to the Fermi energy. The interest of these localized states in regards the formation of quantum dots in graphene is discussed.

Locations

  • arXiv (Cornell University) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones CientĂ­ficas) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ Electronic structures and transport properties of cove-edged graphene nanoribbons 2023 David M.-T. Kuo
+ Self-consistent Hartree theory of the role of electron-electron interactions in the electronic structure and conductance quantization of graphene nanoconstrictions 2012 S. Ihnatsenka
George Kirczenow
+ Quantum Electronic Transport Across "Bite" Defects in Graphene Nanoribbons 2020 Michele Pizzochero
Kristiāns ČerƆevičs
Gabriela Borin Barin
Shiyong Wang
Pascal Ruffieux
RomĂĄn Fasel
Oleg V. Yazyev
+ PDF Chat Third edge for a graphene nanoribbon: A tight-binding model calculation 2011 D. A. Bahamon
A. L. C. Pereira
P. A. Schulz
+ PDF Chat Band-gap engineering and ballistic transport in edge-corrugated graphene nanoribbons 2009 S. Ihnatsenka
Igor Zozoulenko
George Kirczenow
+ PDF Chat Combined effect of strain and defects on the conductance of graphene nanoribbons 2013 Thomas Lehmann
Dmitry A. Ryndyk
Gianaurelio Cuniberti
+ PDF Chat Interplay between edge states and simple bulk defects in graphene nanoribbons 2013 Liviu BĂźlteanu
C. Dutreix
Anu Jagannathan
Cristina Bena
+ PDF Chat Charge transport in disordered graphene-based low dimensional materials 2008 Alessandro Cresti
Norbert Nemec
Blanca Biel
Gabriel Niebler
François Triozon
Gianaurelio Cuniberti
Stephan Roche
+ PDF Chat Quantized perfect transmission in graphene nanoribbons with random hollow adsorbates 2024 Jiale Yu
Zhe Hou
Irfan Hussain Bhat
Pei-Jia Hu
Jiawen Sun
Xiaofeng Chen
Aimin Guo
Qing-Feng Sun
+ PDF Chat Quantized perfect transmission in graphene nanoribbons with random hollow adsorbates 2024 Jiale Yu
Zhe Hou
Irfan Hussain Bhat
Pei-Jia Hu
Jiawen Sun
Xiaofeng Chen
Aimin Guo
Qing-Feng Sun
+ PDF Chat Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate 2014 D. Bischoff
Florian Libisch
Joachim Burgdörfer
Thomas Ihn
K. Ensslin
+ Quantum conductance of graphene nanoribbons with edge defects 2008 Tongcang Li
Shaoping Lu
+ PDF Chat Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects 2011 J. N. B. Rodrigues
P. A. D. Gonçalves
N. F. G. Rodrigues
R. M. Ribeiro
J. M. B. Lopes dos Santos
N. M. R. Peres
+ PDF Chat Propagating, evanescent, and localized states in carbon nanotube–graphene junctions 2009 J. González
F. Guinea
J. Herrero
+ PDF Chat Coherent transport of armchair graphene constrictions 2010 Huiqiong Yin
Wei Li
Xiao Hu
Ruibao Tao
+ PDF Chat Entanglement, excitations, and correlation effects in narrow zigzag graphene nanoribbons 2016 Imre HagymĂĄsi
Örs Legeza
+ PDF Chat Interacting electrons in graphene nanoribbons in the lowest Landau level 2011 A. A. Shylau
Igor Zozoulenko
+ PDF Chat Design Rules for Interconnects Based on Graphene Nanoribbon Junctions 2024 Kristiāns ČerƆevičs
Oleg V. Yazyev
+ Order amidst disorder in semi-regular, tatty, and atypical random nanodevices with locally correlated disorder 2020 M. A. Novotny
TomĂĄĆĄ NovotnĂœ
+ PDF Chat Robust edge states induced by electron-phonon interaction in graphene nanoribbons 2018 HernĂĄn L. Calvo
Javier S. Luna
Virginia Dal Lago
Luis E. F. Foa Torres

Works That Cite This (79)

Action Title Year Authors
+ PDF Chat Reducing sheet resistance of self-assembled transparent graphene films by defect patching and doping with UV/ozone treatment 2018 Tijana Tomaơević-Ilić
Ð. Jovanović
Igor Popov
Rajveer Fandan
Jorge PedrĂłs
Marko Spasenović
Radoơ Gajić
+ PDF Chat Taylor series of Landauer conductance 2020 Carlos RamĂ­rez GarcĂ­a
Mauricio J. RodrĂ­guez
Bryan Gomez
+ PDF Chat Electron-electron interactions and charging effects in graphene quantum dots 2008 Bernhard WĂŒnsch
Tobias Stauber
F. Guinea
+ PDF Chat Semiclassical deconstruction of quantum states in graphene 2013 Douglas J. Mason
Mario F. Borunda
Eric J. Heller
+ PDF Chat Spin-valve effect in zigzag graphene nanoribbons by defect engineering 2009 Sankaran Lakshmi
Stephan Roche
Gianaurelio Cuniberti
+ PDF Chat Electron transmission through step‐ and barrier‐like potentials in graphene ribbons 2008 Yu. O. Klymenko
Lyuba Malysheva
Alexander Onipko
+ PDF Chat Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias 2008 Zuanyi Li
Haiyun Qian
Jian Wu
Bing-Lin Gu
Wenhui Duan
+ PDF Chat Charge transport in disordered graphene-based low dimensional materials 2008 Alessandro Cresti
Norbert Nemec
Blanca Biel
Gabriel Niebler
François Triozon
Gianaurelio Cuniberti
Stephan Roche
+ PDF Chat Transport Length Scales in Disordered Graphene-Based Materials: Strong Localization Regimes and Dimensionality Effects 2008 Aurélien Lherbier
Blanca Biel
Yann-Michel Niquet
Stephan Roche
+ PDF Chat Topological Insulators in Amorphous Systems 2017 Adhip Agarwala
Vijay B. Shenoy

Works Cited by This (21)

Action Title Year Authors
+ PDF Chat Electronic states of graphene nanoribbons studied with the Dirac equation 2006 L. Brey
H. A. Fertig
+ PDF Chat Kondo physics in carbon nanotubes 2000 Jesper NygÄrd
David Cobden
P. E. Lindelöf
+ PDF Chat Sub-Poissonian Shot Noise in Graphene 2006 J. TworzydƂo
Björn Trauzettel
M. Titov
Adam Rycerz
C. W. J. Beenakker
+ PDF Chat Selective transmission of Dirac electrons and ballistic magnetoresistance of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>n</mml:mi><mml:mtext>−</mml:mtext><mml:mi>p</mml:mi></mml:mrow></mml:math>junctions in graphene 2006 Vadim Cheianov
Vladimir I. Fal’ko
+ PDF Chat Electronic and magnetic properties of nanographite ribbons 1999 Katsunori Wakabayashi
Mitsutaka Fujita
Hiroshi Ajiki
Manfred Sigrist
+ PDF Chat Local defects and ferromagnetism in graphene layers 2005 MarĂ­a A. H. Vozmediano
M. P. LĂłpez-Sancho
Tobias Stauber
F. Guinea
+ PDF Chat Electron-hole symmetry in a semiconducting carbon nanotube quantum dot 2004 Pablo Jarillo‐Herrero
Sami Sapmaz
Cees Dekker
Leo P. Kouwenhoven
Herre S. J. van der Zant
+ PDF Chat Unconventional Quasiparticle Lifetime in Graphite 1996 J. GonzĂĄlez
F. Guinea
MarĂ­a A. H. Vozmediano
+ PDF Chat Coulomb interactions and ferromagnetism in pure and doped graphene 2005 N. M. R. Peres
F. Guinea
A. H. Castro Neto
+ PDF Chat Peculiar width dependence of the electronic properties of carbon nanoribbons 2006 Motohiko Ezawa