A symmetric matrix criterion for polynomial root clustering

Type: Article

Publication Date: 1990-01-01

Citations: 7

DOI: https://doi.org/10.1109/31.45716

Locations

  • IEEE Transactions on Circuits and Systems - View

Similar Works

Action Title Year Authors
+ The Schwarz-Christoffel Transformation and Polynomial Root Clustering 1 1978 Theodore A. Bickart
E.I. Jury
+ Regions of polynomial root clustering 1977 Theodore A. Bickart
E.I. Jury
+ Voronoi Diagrams and Polynomial Root-Finding 2009 Bahman Kalantari
+ A root-clustering theorem 1981 S. Gutman
G. Shwartz
+ Bezoutians, Euclidean Algorithm, and Orthogonal Polynomials 2005 Alain Lascoux
Piotr Pragacz
+ Root-Clustering Criteria (I): The Composite-Matrix Approach 1989 S. Gutman
Fabien Chojnowski
+ Linear matrix equations and root clustering 1989 S. Gutman
Hedi Taub
+ A Sequence of Symmetric BĂ©zout Matrix Polynomials 2016 Leili Rafiee Sevyeri
+ PDF Chat Moments matrices, real algebraic geometry and polynomial optimization 2014 Marta Abril Bucero
+ A convex geometric approach to counting the roots of a polynomial system 1994 J. Maurice Rojas
+ The new geometric criterion of polynomial stability 1988 Xiaojun Wang
+ Correction to "Necessary and sufficient conditions for root clustering of a polytope of polynomials in a simply connected domain" 2003 E. Zeheb
+ The Polynomial Method 2019 Ciprian Demeter
+ Voronoi Diagram Properties in Polynomials with Polynomiography Applications and Extensions 2012 Bahman Kalantari
+ Computational aspects of deciding if all roots of a polynomial lie within the unit circle 1976 Peter G. Anderson
M. R. Garey
Lee E. Heindel
+ A Polynomial-Based Clearance Method 2007 L. Verde
Federico Corraro
+ PDF Chat Real Root Finding for Rank Defects in Linear Hankel Matrices 2015 Didier Henrion
Simone Naldi
Mohab Safey El Din
+ A Polynomial Based Clearance Method 2003 Federico Corraro
M. Virgilio
+ A similarity test for Ore polynomials 2014 José Gómez-Torrecillas
F. J. Lobillo
Gabriel Navarro Garulo
+ A Method for Computing Symmetric and Related Polynomials 2000 Walter Feit