Uniformly Accurate Quantile Bounds Via The Truncated Moment Generating Function: The Symmetric Case

Type: Article

Publication Date: 2007-01-01

Citations: 5

DOI: https://doi.org/10.1214/ejp.v12-452

Abstract

Let $X_1, X_2, \dots$ be independent and symmetric random variables such that $S_n = X_1 + \cdots + X_n$ converges to a finite valued random variable $S$ a.s. and let $S^* = \sup_{1 \leq n \leq \infty} S_n$ (which is finite a.s.). We construct upper and lower bounds for $s_y$ and $s_y^*$, the upper $1/y$-th quantile of $S_y$ and $S^*$, respectively. Our approximations rely on an explicitly computable quantity $\underline q_y$ for which we prove that $$\frac 1 2 \underline q_{y/2} < s_y^* < 2 \underline q_{2y} \quad \text{ and } \quad \frac 1 2 \underline q_{ (y/4) ( 1 + \sqrt{ 1 - 8/y})} < s_y < 2 \underline q_{2y}. $$ The RHS's hold for $y \geq 2$ and the LHS's for $y \geq 94$ and $y \geq 97$, respectively. Although our results are derived primarily for symmetric random variables, they apply to non-negative variates and extend to an absolute value of a sum of independent but otherwise arbitrary random variables.

Locations

  • Electronic Journal of Probability - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View

Similar Works

Action Title Year Authors
+ Uniformly Accurate Quantile Bounds Via The Truncated Moment Generating Function: The Symmetric Case 2007 Nsf
+ Uniformly Accurate Quantile Bounds for Sums of Arbitrary Independent Random Variables 2009 Michael J. Klass
Krzysztof Nowicki
+ Efficient estimation of the reciprocal of the density quantile function at a point 1986 G. Jogesh Babu
+ Non-asymptotic bounds for percentiles of independent non-identical random variables 2018 Dong Xia
+ On the approximation accuracy for quantiles in a random-size sample 2008 V. I. Pagurova
+ On a distribution-free quantile estimator 2001 Mei Ling Huang
+ Asymptotic properties of sample quantiles of discrete distributions 2009 Yanyuan Ma
Marc G. Genton
Emanuel Parzen
+ Inference for quantile measures of skewness 2014 Robert G. Staudte
+ PDF Chat Percentiles of sums of heavy-tailed random variables: beyond the single-loss approximation 2013 Lorenzo Hernández
Jorge Tejero
Alberto Suárez
Santiago Carrillo-Menéndez
+ PDF Chat Approximation of partial sums of arbitrary i.i.d. random variables and the precision of the usual exponential upper bound 1997 Marjorie G. Hahn
Michael J. Klass
+ Robust Quantile Estimators for Skewed Populations 1990 Paul S. Horn
+ Moments and Tails 2023 SĂ©bastien Roch
+ 17 Approximations to distributions of sample quantiles 1998 Chunsheng Ma
John Robinson
+ A Central Limit Theorem For Empirical Quantiles in the Markov Chain Setting 2022 Peter W. Glynn
Shane G. Henderson
+ A weighted quantile regression for randomly truncated data 2010 Weihua Zhou
+ Quantile Estimators 2011 Michael Sfakianakis
+ High quantile estimation for heavy-tailed distributions 2005 Natalia M. Markovich
+ Uniform Bounds on the Relative Error in the Approximation of Upper Quantiles for Sums of Arbitrary Independent Random Variables 2015 Michael J. Klass
Krzysztof Nowicki
+ Quantile Models for Bounded Variables 2020
+ On the approximation accuracy for randomly indexed quantiles 2009 V. I. Pagurova