A new mode reduction strategy for the generalized Kuramoto-Sivashinsky equation

Type: Article

Publication Date: 2013-10-24

Citations: 14

DOI: https://doi.org/10.1093/imamat/hxt041

Abstract

Consider the generalized Kuramoto–Sivashinsky (gKS) equation. It is a model prototype for a wide variety of physical systems, from flame-front propagation, and more general front propagation in reaction–diffusion systems, to interface motion of viscous film flows. Our aim is to develop a systematic and rigorous low-dimensional representation of the gKS equation. For this purpose, we approximate it by a renormalization group equation which is qualitatively characterized by rigorous error bounds. This formulation allows for a new stochastic mode reduction guaranteeing optimality in the sense of maximal information entropy. Herewith, noise is systematically added to the reduced gKS equation and gives a rigorous and analytical explanation for its origin. These new results would allow one to reliably perform low-dimensional numerical computations by accounting for the neglected degrees of freedom in a systematic way. Moreover, the presented reduction strategy might also be useful in other applications where classical mode reduction approaches fail or are too complicated to be implemented.

Locations

  • IMA Journal of Applied Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • Open Research Online - ORO (The Open University) - View - PDF

Similar Works

Action Title Year Authors
+ A New Mode Reduction Strategy for the Generalized Kuramoto-Sivashinsky Equation 2011 Markus Schmuck
Manuel Monleón Pradas
Grigorios A. Pavliotis
Serafim Kalliadasis
+ PDF Chat New Stochastic Mode Reduction Strategy for Dissipative Systems 2013 Markus Schmuck
Manuel Monleón Pradas
Serafim Kalliadasis
Grigorios A. Pavliotis
+ PDF Chat Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation 2016 Fei Lu
Kevin K. Lin
Alexandre J. Chorin
+ THEWELL-POSEDNESSOFTHEKURAMOTO-SIVASHINSKY EQUATION* 1986 Eitan Tadmor
+ Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1+1 dimensions (Turbulence phenomena and their reduction from the point of view of dynamical systems) 2005 和人 上之
英継 坂口
誠 岡村
+ THE LARGE TIME CONVERGENCE OF SPECTRAL METHOD FOR GENERALIZED KURAMOTO-SIVASHINSKY EQUATIONS 1997 Guo
Xiang
Xm
+ Accurately model the Kuramoto--Sivashinsky dynamics with holistic discretisation 2005 Tony MacKenzie
A. J. Roberts
+ PDF Chat On the well-posedness of an anisotropically-reduced two-dimensional Kuramoto–Sivashinsky equation 2020 Adam Larios
Kazuo Yamazaki
+ PDF Chat Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem. 2009 Claude-Michel Brauner
Josephus Hulshof
Luca Lorenzi
+ Green's function-based time stepping for the Kuramoto-Sivashinsky initial-boundary value problem 2015 Lennaert van Veen
+ Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1+1 dimensions (乱流現象と力学系的縮約 研究集会報告集) 2005 和人 上之
英継 坂口
誠 岡村
+ Supplementary material from "Nonlinear dynamics of a dispersive anisotropic Kuramoto–Sivashinsky equation in two space dimensions" 2018 Ruben J. Tomlin
Anna Kalogirou
Demetrios T. Papageorgiou
+ Rigorous derivation of the Kuramoto–Sivashinsky equation from a 2D weakly nonlinear Stefan problem 2011 Claude-Michel Brauner
Josephus Hulshof
Luca Lorenzi
+ Fourier spectral method for the kuramoto-sivashimsky eguation 1997 이은영
+ PDF Chat Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation 2010 Matteo Nicoli
Edoardo Vivo
Rodolfo Cuerno
+ Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof 2003 Daniel Wilczak
+ Analysis of Kuramoto-Sivashinsky Model of Flame/Smoldering Front by Means of Curvature Driven Flow 2020 Miroslav Kolář
Shunsuke Kobayashi
Yasuhide Uegata
Shigetoshi Yazaki
Michal Beneš
+ A particle model for the Kuramoto-Sivashinsky equation 1995 Martin Rost
Joachim Krug
+ Backward difference formulae for Kuramoto–Sivashinsky type equations 2016 Georgios Akrivis
Yiorgos‐Sokratis Smyrlis
+ Kuramoto–Sivashinsky Equation 2011 Graham W. Griffiths
William E. Schiesser

Works That Cite This (11)

Action Title Year Authors
+ PDF Chat Modelling and nonlinear boundary stabilization of the modified generalized Korteweg–de Vries–Burgers equation 2019 Nejib Smaoui
Boumediène Chentouf
Ala’ Alalabi
+ PDF Chat Data-driven coarse graining in action: Modeling and prediction of complex systems 2015 Sebastian Krumscheid
Manuel Monleón Pradas
Grigorios A. Pavliotis
Serafim Kalliadasis
+ Data-based stochastic model reduction for the Kuramoto--Sivashinsky equation 2015 Fei Lu
Kevin K. Lin
Alexandre J. Chorin
+ Dynamics and control of the modified generalized Korteweg–de Vries–Burgers equation with periodic boundary conditions 2021 Nejib Smaoui
Rasha Al Jamal
+ PDF Chat Linear response based parameter estimation in the presence of model error 2021 He Zhang
John Harlim
Xiantao Li
+ PDF Chat Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation 2016 Fei Lu
Kevin K. Lin
Alexandre J. Chorin
+ A single‐input single‐output versus multiple‐input multiple‐output feedback controllers for the Korteweg‐de Vries‐Kuramoto‐Sivashinsky equation 2023 Nejib Smaoui
Rasha Al Jamal
+ PDF Chat Variational Approach to Closure of Nonlinear Dynamical Systems: Autonomous Case 2019 Mickaël D. Chekroun
Honghu Liu
James C. McWilliams
+ Nonlinear Adaptive Boundary Control of the Modified Generalized Korteweg–de Vries–Burgers Equation 2020 Boumediène Chentouf
Nejib Smaoui
Ala’ Alalabi
+ A single bounded input‐feedback control to the generalized Korteweg–de Vries–Burgers–Kuramoto–Sivashinsky equation 2022 Rasha Al Jamal
Nejib Smaoui