On β„Žπ‘œπ‘šdimπ‘€π‘ˆ_{*}(π‘‹Γ—π‘Œ)

Type: Article

Publication Date: 1976-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1976-0407831-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B bold upper Z slash p"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">B{\mathbf {Z}}/p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the classifying space for the cyclic group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Z slash p"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Z}}/p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of prime order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A finite complex <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is constructed such that <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="hom dot dimension Subscript upper M upper U Sub Subscript asterisk Subscript Baseline upper M upper U Subscript asterisk Baseline left-parenthesis upper X times upper B bold upper Z slash p right-parenthesis greater-than hom dot dimension Subscript upper M upper U Sub Subscript asterisk Subscript Baseline upper M upper U Subscript asterisk Baseline left-parenthesis upper X right-parenthesis plus hom dot dimension Subscript upper M upper U Sub Subscript asterisk Subscript Baseline upper M upper U Subscript asterisk Baseline left-parenthesis upper B bold upper Z slash p right-parenthesis period"> <mml:semantics> <mml:mrow> <mml:mi>hom</mml:mi> <mml:mo>β‹…<!-- β‹… --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>M</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>U</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>M</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>U</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>Γ—<!-- Γ— --></mml:mo> <mml:mi>B</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mi>hom</mml:mi> <mml:mo>β‹…<!-- β‹… --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>M</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>U</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>M</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>U</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>hom</mml:mi> <mml:mo>β‹…<!-- β‹… --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>M</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>U</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msub> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>M</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>U</mml:mi> <mml:mo>βˆ—<!-- βˆ— --></mml:mo> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>B</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(X \times B{\mathbf {Z}}/p) &gt; \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(X) + \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(B{\mathbf {Z}}/p).</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula>

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On 𝐻_{*}(Ωⁿ⁺²𝑆ⁿ⁺¹;𝐹₂) 1989 Thomas J. Hunter
+ PDF Chat Cyclic vectors in 𝐴^{-∞} 1988 Leon Brown
Boris Korenblum
+ PDF Chat On primes 𝑝 with 𝜎(𝑝^{𝛼})=π‘šΒ² 1987 J. Chidambaraswamy
P. V. Krishnaiah
+ PDF Chat When is a 𝑝-block a π‘ž-block? 1997 Gabriel Navarro
Wolfgang M. Willems
+ On groups having a 𝑝-constant character 2020 Silvio Dolfi
Emanuele Pacifici
LucΓ­a Sanus
+ PDF Chat Cyclic extensions of 𝐾(√-1)/𝐾 1989 Jón Kr. Arason
Burton Fein
Murray Schacher
Jack Sonn
+ On the structure of 𝑃(𝑛)_{βˆ—}𝑃((𝑛)) for 𝑝=2 2002 Christian Nassau
+ PDF Chat On the group ${\rm SSF}(G),\;G$ a cyclic group of prime order 1985 Michael Maller
J. Whitehead
+ PDF Chat Zero divisors and 𝐿^{𝑝}(𝐺) 1998 Michael J. Puls
+ Algebraic 𝐾-theory of 𝑇𝐻𝐻(𝔽_{𝕑}) 2022 Haldun Γ–zgΓΌr BayΔ±ndΔ±r
Tasos Moulinos
+ PDF Chat On 𝐿¹ isomorphisms 1980 Michael Cambern
+ Sur le rang du 2-groupe de classes de 𝑄({√{π‘š}},{√{𝑑}}) oΓΉ π‘š=2 ou un premier 𝑝≑1(π‘šπ‘œπ‘‘4) 2001 Abdelmalek Azizi
Ali Mouhib
+ The flat model structure on 𝐂𝐑(𝐑) 2004 James Gillespie
+ PDF Chat On the congruence 2ⁿ⁻²≑1(π‘šπ‘œπ‘‘π‘›) 1984 A. Rotkiewicz
+ PDF Chat The equivalence of Γ—^{𝑑}πΆβ‰ˆΓ—^{𝑑}𝐷 and π½Γ—πΆβ‰ˆπ½Γ—π· 1979 R. Hirshon
+ PDF Chat Groups of finite weight 1981 A. H. Rhemtulla
+ Characters of πœ‹β€™-degree 2019 Eugenio Giannelli
A. A. Schaeffer Fry
Carolina Vallejo
+ Essential 𝑝-dimension of 𝐏𝐆𝐋(𝐩²) 2010 Alexander Merkurjev
+ PDF Chat On 𝐢^{π‘š} rational approximation 1986 Joan Verdera
+ PDF Chat 𝐴₂-annihilated elements in 𝐻_{*}(ΩΣ𝑅𝑃²) 1993 David J. Anick
Franklin P. Peterson

Works That Cite This (0)

Action Title Year Authors