High-Resolution Nonoscillatory Central Schemes for Hamilton--Jacobi Equations

Type: Article

Publication Date: 2000-01-01

Citations: 88

DOI: https://doi.org/10.1137/s1064827598344856

Locations

  • SIAM Journal on Scientific Computing - View

Similar Works

Action Title Year Authors
+ PDF Chat Central Schemes for Multidimensional Hamilton--Jacobi Equations 2003 Steve Bryson
Doron Levy
+ Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations 2002 Steve Bryson
Doron Levy
Bryan Biegel
+ Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations 2004 Steve Bryson
+ PDF Chat High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton–Jacobi equations 2003 Steve Bryson
Doron Levy
+ New High-Resolution Semi-discrete Central Schemes for Hamilton–Jacobi Equations 2000 Alexander Kurganov
Eitan Tadmor
+ Computational Exploitation of Low-Dimensional Nonlinearities in Hamilton-Jacobi PDEs 2024 William M. McEneaney
Peter M. Dower
Yifei Zheng
+ High-Order Schemes for Multi-Dimensional Hamilton-Jacobi Equations 2003 Steve Bryson
Doron Levy
+ High-resolution semi-discrete Hermite central-upwind scheme for multidimensional Hamilton–Jacobi equations 2014 Li Cai
Wen-Xian Xie
Yufeng Nie
Jian-Hu Feng
+ A Second Order Central Scheme for Hamilton-Jacobi Equations on Triangular Grids 2009 Peter Popov
Bojan Popov
+ High-order central WENO schemes for 1D Hamilton-Jacobi equations 2003 Stephen T. Bryson
Doron Levy
+ Projection Dynamics in Godunov-Type Schemes 1998 Kun Xu
Jishan Hu
+ Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws 1998 Guang-Shan Jiang
Eitan Tadmor
+ Compressed Semi-Discrete Central-Upwind Schemes for Hamilton-Jacobi Equations 2003 Steve Bryson
Alexander Kurganov
Doron Levy
Guergana Petrova
+ PDF Chat High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations 2003 Steve Bryson
Doron Levy
+ Adaptive Central-Upwind Schemes for Hamilton–Jacobi Equations with Nonconvex Hamiltonians 2006 Alexander Kurganov
Guergana Petrova
+ On Godunov-type methods near low densities 1991 Bernd Einfeldt
C.‐D. Munz
Philip L. Roe
Björn Sjögreen
+ Convergence of Godunov-Type Schemes for Scalar Conservation Laws Under Large Time Steps 2006 Jing‐Mei Qiu
Chi‐Wang Shu
+ Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton--Jacobi Equations 2001 Alexander Kurganov
Sebastian Noelle
Guergana Petrova
+ High-resolution alternating evolution schemes for hyperbolic conservation laws and Hamilton-Jacobi equations 2008 Haseena Ahmed
+ Non-oscillatory central schemes for 3D hyperbolic conservation laws 2009 Jorge BalbĂĄs
Xinming Qian

Works That Cite This (72)

Action Title Year Authors
+ A Sixth-Order Weighted Essentially Non-oscillatory Schemes Based on Exponential Polynomials for Hamilton–Jacobi Equations 2017 Youngsoo Ha
Chang Ho Kim
Hyoseon Yang
Jungho Yoon
+ PDF Chat High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations 2003 Steve Bryson
Doron Levy
+ High-Order Semi-Discrete Central-Upwind Schemes with Lax–Wendroff-Type Time Discretizations for Hamilton–Jacobi Equations 2017 Rooholah Abedian
+ Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations 2004 Steve Bryson
+ Fast Sweeping Methods for Eikonal Equations on Triangular Meshes 2007 Jianliang Qian
Yong‐Tao Zhang
Hongkai Zhao
+ PDF Chat A second order discontinuous Galerkin fast sweeping method for Eikonal equations 2008 Fengyan Li
Chi‐Wang Shu
Yong‐Tao Zhang
Hongkai Zhao
+ PDF Chat An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two- and three-dimensions 2003 Huazhong Tang
Tao Tang
Pingwen Zhang
+ PDF Chat High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton–Jacobi equations 2003 Steve Bryson
Doron Levy
+ PDF Chat Filtered schemes for Hamilton–Jacobi equations: A simple construction of convergent accurate difference schemes 2015 Adam M. Oberman
Tiago Salvador
+ PDF Chat The effect of geometry on survival and extinction in a moving-boundary problem motivated by the Fisher–KPP equation 2022 Alexander Tam
Matthew J. Simpson