A new energy characterization of the smallest eigenvalue of the schrödinger equation

Type: Article

Publication Date: 1977-11-01

Citations: 51

DOI: https://doi.org/10.1002/cpa.3160300604

Locations

  • Communications on Pure and Applied Mathematics - View

Similar Works

Action Title Year Authors
+ A Note on the Non-existence of Eigenvalues of Schrodinger Equations 1977 Osanobu Yamada
+ A method for computing eigenvalues of certain Schrödinger-like equations 1966 Richard C. Allen
G. Milton Wing
+ A new method for computing eigenvalues of the radial Schrödinger equation 1995 T. E. Simos
+ The Schrödinger Eigenvalue Problem 2016
+ A NONISOSPECTRAL PROBLEM ASSOCIATED WITH THE MULTIDIMENSIONAL SCHRÖDINGER EQUATION 2003 Marek Adam. Jaworski
+ A new approach to solving the Schrödinger equation 2020 Sergio A. Hojman
Felipe A. Asenjo
+ New numerical method for the eigenvalue problem of the 2D Schrödinger equation 2010 L.Gr. Ixaru
+ PDF Chat An eigenvalue problem for the Schrödinger-Maxwell equations 1998 Vieri Benci
Donato Fortunato
+ A new derivation of the schrödinger equation 1982 H. Ioannidou
+ Introduction to Semiclassical Methods for the Schrödinger Operator with a Large Electric Potential 2009 Søren Fournais
Bernard Helffer
+ New spectral criteria for the Schrödinger operator 2004 Vladimir G. Maz ́ya
+ Lower bounds to eigenvalues of the schrödinger equation by the partitioning technique 2009 Timothy M. Wilson
+ A new method for the solution of the Schrödinger equation 2017 Jakub Kocák
+ Spectral Theory and Wave Operators for the Schrödinger Equation (A. M. Berthier) 1984 Martin Schechter
+ A New Tool for Approaching Eigenvalues of the Quadratic Pencil of Schrödinger Operators 2024 S. Kamouche
Muhammet Kurulay
Hamza Guebbaï
Mourad Ghiat
+ PDF Chat Multiplicities of the eigenvalues of the discrete Schrödinger equation in any dimension 1988 Dan Burghelea
Thomas Kappeler
+ Nonlinear Schrödinger Equation and the Hyperbolization Method 2022 A.D. Yunakovsky
+ Oscillation criteria of Nehari-type for the Schrödinger equation 1980 E. Müller‐Pfeiffer
+ A new aspect of the calculation of the bounded energy spectrum and of the eigenfunctions in the Schrödinger equation 1967 H. Almström
+ Optimization of the principal eigenvalue of the one-dimensional Schrodinger operator 2008 Ryan I. Fernandes
Behrouz Emamizadeh