Chaotic properties of dilute two- and three-dimensional random Lorentz gases. II. Open systems

Type: Article

Publication Date: 2000-12-27

Citations: 27

DOI: https://doi.org/10.1103/physreve.63.016312

Abstract

We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e., the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate formalism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.

Locations

  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Chaotic properties of dilute two- and three-dimensional random Lorentz gases: Equilibrium systems 1998 Henk van Beijeren
Arnulf Latz
J. R. Dorfman
+ PDF Chat Lyapunov spectrum of the many-dimensional dilute random Lorentz gas 2004 Astrid S. de Wijn
Henk van Beijeren
+ PDF Chat Systematic Density Expansion of the Lyapunov Exponents for a Two-Dimensional Random Lorentz Gas 2006 H. V. Kruis
Debabrata Panja
Henk van Beijeren
+ PDF Chat Fractals and dynamical chaos in a random 2D Lorentz gas with sinks 2003 Isabelle Claus
Pierre Gaspard
Henk van Beijeren
+ Fractals and dynamical chaos in a two-dimensional Lorentz gas with sinks 2001 Isabelle Claus
Pierre Gaspard
+ PDF Chat Lyapunov Exponents from Kinetic Theory for a Dilute, Field-Driven Lorentz Gas 1996 Henk van Beijeren
J. R. Dorfman
E. G. D. Cohen
Harald A. Posch
Christoph Dellago
+ PDF Chat Chaotic diffusion in periodic lattices with repulsive potentials 2015 S. Gil
Janne Solanpää
Timo J. Hämäläinen
E. Räsänen
Rainer Klages
+ PDF Chat Measures with infinite Lyapunov exponents for the periodic Lorentz gas 1996 N. Chernov
Serge Troubetzkoy
+ Long-time-tail Effects on Lyapunov Exponents of a Random, Two-dimensional Field-driven Lorentz Gas 2000 Debabrata Panja
J. R. Dorfman
Henk van Beijeren
+ Study of Entropy-Diffusion Relation in a Deterministic Hamiltonian System through Microscopic Analysis 2020 Subhajit Acharya
Biman Bagchi
+ PDF Chat Entropy production of diffusion in spatially periodic deterministic systems 2002 J. R. Dorfman
Pierre Gaspard
Thomas Gilbert
+ Chaotic scattering and diffusion in the Lorentz gas 1995 Pierre Gaspard
F. Baras
+ PDF Chat Lyapunov Exponents and Kolmogorov-Sinai Entropy for the Lorentz Gas at Low Densities 1996 Henk van Beijeren
J. R. Dorfman
+ Diffusion-Entropy Scaling in a Deterministic Hamiltonian System 2020 Subhajit Acharya
Biman Bagchi
+ PDF Chat Lyapunov spectra of billiards with cylindrical scatterers: Comparison with many-particle systems 2005 Astrid S. de Wijn
+ PDF Chat Mean-Field Theory for Lyapunov Exponents and Kolmogorov-Sinai Entropy in Lorentz Lattice Gases 1995 M. H. Ernst
J. R. Dorfman
R. Nix
Donald J. Jacobs
+ Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy and the Largest Lyapunov Exponents for Dilute, Hard-Ball Gases and for Dilute, Random Lorentz Gases 1999 Henk van Beijeren
R. van Zon
J. R. Dorfman
+ PDF Chat Lyapunov exponents of stochastic systems—from micro to macro 2016 Tanguy Laffargue
Julien Tailleur
Frédéric van Wijland
+ Entropy and Lyapunov exponents of random diffeomorphisms 1995 Peidong Liu
Min Qian
+ Fractality of the nonequilibrium stationary states of open volume-preserving systems. I. Tagged particle diffusion 2009 Felipe Barra
Pierre Gaspard
Thomas Gilbert