ON THE EQUATION x(x+d)…(x+(k-1)d)=by 2

Type: Article

Publication Date: 2000-05-01

Citations: 1

DOI: https://doi.org/10.1017/s0017089500020115

Abstract

In this paper we give a new bound for the solutionsx of the title equation, provided that k \ge 8. This bound is polynomial in d. Moreover, under the same condition, a similar bound for the number of solutions in (x, k, y, l) is given.

Locations

  • Glasgow Mathematical Journal - View - PDF

Similar Works

Action Title Year Authors
+ The number of solutions to $y^2=px(Ax^2+2)$ 2015 Tarek Garici
Omar Kihel
Jesse Larone
+ The number of solutions to $y^2=px(Ax^2+2)$ 2015 Tarek Garici
Omar Kihel
Jesse Larone
+ On the equation x(x + d) ... (x + (k – 1)d) = y(y + d) ... (y + (mk – 1)d) 1992 N. Saradha
T. N. Shorey
+ PDF Chat The number of solutions to y2=px(ax2+2) 2018 Tarek Garici
Omar Kihel
Jesse Larone
+ PDF Chat On the equationx(x +d 1)…(x + (k - 1)d 1) =y(y +d 2)…(y + (mk - 1)d 2) 1994 N. Saradha
T. N. Shorey
+ On the equation $1^k+2^k+\cdots+x^k=y^n$ 2003 K. Győry
Ákos Pintér
+ on the Diophantine equation x(x+1)…(x+n)+1=y2 2000 Nobuhisa Abe
+ On the Diophantine equation ax 2 -I- by 2 = ck n ~ 2005 Pingzhi Yuan
+ PDF Chat On the Diophantine Equation $\bf 1+x+y=z$ 1992 Leo J. Alex
Lorraine L. Foster
+ PDF Chat On the diophantine equation ${n \choose k} = x^l$ 1997 Kálmán Győry
+ PDF Chat On the equation x(x+1)... (x+k-1) = y(y+d)... (y+(mk-1)d), m=1,2 1995 N. Saradha
T. N. Shorey
R. Tijdeman
+ Solutions of the Diophantine Equation x 2 - Dy 4 = k 1968 D. S.
Mohan Lal
James Dawe
+ On the number of solutions of the equation $1^k+2^k+\cdots+(x-1)^k=y^z$ 2000 B. Brindza
Á. Pintér
+ On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+\cdots+(lx)^{k}=y^{n}$ 2017 Gökhan Soydan
+ On the equation (x+1)...(x+k) = (y+1)...(y+mk) 1992 N. Saradha
T. N. Shorey
+ On the diophantine equation $x^2+5^k17^l=y^n$ 2011 István Pink
Zsolt Rábai
+ On the Diophantine Equation x 2n - y 2 = 1 1986 Zhenfu Cao
+ PDF Chat On the Equation $s(1^k+2^k+\cdots+x^k)+r=by^z$ 1990 Hiroyuki Kano
+ On the equation \(x_0^2 + x_1^2 + \dots + x_n^2 = x_{n+1}^k\) 2017 W. Gorzkowski
+ On the Diophantine Equation (x + 1) y - x z = 1 1998 Hong Bing Yu

Works That Cite This (1)

Action Title Year Authors
+ Binomial Coefficients and Lucas Sequences 2002 Achim Flammenkamp
Florian Luca