The asymptotics of the determinant function for a class of operators

Type: Article

Publication Date: 1989-01-01

Citations: 12

DOI: https://doi.org/10.1090/s0002-9939-1989-0975642-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an elliptic pseudodifferential operator on a closed manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ord upper A greater-than dimension upper M"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>ord</mml:mtext> </mml:mrow> <mml:mi>A</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>dim</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {ord}}A &gt; \dim M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We derive the asymptotics of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="log det left-parenthesis 1 plus epsilon upper A Superscript negative 1 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo movablelimits="true" form="prefix">det</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\log \det (1 + \varepsilon {A^{ - 1}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\varepsilon \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The constant term of this asymptotics equals <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="minus log det upper A"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo movablelimits="true" form="prefix">det</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">- \log \det A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A coefficient of an asymptotic expansion of logarithms of determinants for classical elliptic pseudodifferential operators with parameters 1996 Yoonweon Lee
+ PDF Chat Degenerate elliptic operators as regularizers 1983 Roger N. Pederson
+ PDF Chat Perturbation theory for the Laplacian on automorphic functions 1992 Ralph S. Phillips
Peter Sarnak
+ PDF Chat Asymptotic expansions of traces for certain convolution operators 1984 Raymond Roccaforte
+ PDF Chat Mean value properties of the Laplacian via spectral theory 1984 Robert S. Strichartz
+ PDF Chat A commutator estimate for pseudo-differential operators 1988 Jürgen Marschall
+ PDF Chat Domain-independent upper bounds for eigenvalues of elliptic operators 1990 Stephen M. Hook
+ PDF Chat The commutant of an analytic Toeplitz operator 1978 Carl C. Cowen
+ PDF Chat Examples of capacity for some elliptic operators 1992 Jang-Mei Wu
+ PDF Chat Analytic properties of elliptic and conditionally elliptic operators. 1971 Michael E. Taylor
+ PDF Chat Donoghue 𝑚-functions for Singular Sturm–Liouville operators 2024 Fritz Gesztesy
Lance L. Littlejohn
R NICHOLS
Michał Piórkowski
Jonathan Stanfill
+ Convergence of Teichmüller deformations in the universal Teichmüller space 2019 Hideki Miyachi
Dragomir Šarić
+ Eigenfunction expansions in ℝⁿ 2011 Todor Gramchev
Stevan Pilipović
Luigi Rodino
+ PDF Chat Gelfand theory of pseudo differential operators and hypoelliptic operators 1971 Michael E. Taylor
+ On criteria for extremality of Teichmüller mappings 2004 Guowu Yao
+ Asymptotics of the d’Alembertian with potential on a pseudo-Riemannian manifold 1999 Thomas Branson
Gestur Ólafsson
+ PDF Chat The product formula for regularized Fredholm determinants 2021 Thomas Britz
Alan L. Carey
Fritz Gesztesy
Roger Nichols
Fedor Sukochev
Dmitriy Zanin
+ Derivatives and asymptotics of Whittaker functions 2011 Nadir Matringe
+ PDF Chat Completely seminormal operators with boundary eigenvalues 1973 Kevin F. Clancey
+ Asymptotics of singular values for quantum derivatives 2022 Rupert L. Frank
Fedor Sukochev
Dmitriy Zanin