An elementary transformation of a special unimodular vector to its top coefficient vector

Type: Article

Publication Date: 1985-01-01

Citations: 28

DOI: https://doi.org/10.1090/s0002-9939-1985-0766519-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a commutative ring, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold v left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">v</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {v}}(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a unimodular <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-vector <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis n greater-than-or-slanted-equals 3 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(n \geqslant 3)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R left-bracket upper X right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">R[X]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Suppose the leading coefficients in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold v left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">v</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {v}}(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> form a unimodular vector <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L left-parenthesis bold v right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">v</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">L({\mathbf {v}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then some element in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E Subscript n Baseline left-parenthesis upper R left-bracket upper X right-bracket right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{E_n}(R[X])</mml:annotation> </mml:semantics> </mml:math> </inline-formula> will transform <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold v left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">v</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {v}}(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L left-parenthesis bold v right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">v</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">L({\mathbf {v}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On unimodular rows 1985 Moshe Roitman
+ PDF Chat Powers of a matrix with coefficients in a Boolean ring 1975 Gert Almkvist
+ PDF Chat Unimodular commutators 1987 Morris Newman
+ PDF Chat The row rank of a subring of a matrix ring 1987 M. S. Li
J. M. Zelmanowitz
+ A structure theorem for the elementary unimodular vector group 2005 Selby Jose
Ravi A. Rao
+ PDF Chat On completing unimodular polynomial vectors of length three 1991 Ravi A. Rao
+ PDF Chat Detecting products of elementary matrices in ${\rm GL}\sb{2}({\bf Z}[\sqrt{d}])$ 1983 Randy Tuler
+ A solution to the Baer splitting problem 2007 Lidia Angeleri Hügel
Silvana Bazzoni
Dolors Herbera
+ PDF Chat On resultants 1983 Gerald Myerson
+ Morphisms between two constructions of Witt vectors of non-commutative rings 2020 Supriya Pisolkar
+ PDF Chat Similarity of parts to the whole for certain multiplication operators 1987 Paul Bourdon
+ PDF Chat On a theorem of Brickman-Fillmore 1976 Antonio Hwang
+ PDF Chat A generalization of a theorem of Jacobson 1971 Susan Montgomery
+ The Eulerian transformation 2021 Petter Brändén
Katharina Jochemko
+ Universal localization of triangular matrix rings 2006 Desmond Sheiham
+ *-Bimodules 2021 Konrad Schmüdgen
+ PDF Chat Bounded polynomial vector fields 1990 Anna Cima
Jaume Llibre
+ PDF Chat The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>-symmetric down-up algebra 2023 Paul Terwilliger
+ PDF Chat Extending a Jordan ring homomorphism 1973 Robert Lewand
+ PDF Chat Algebra direct sum decomposition of 𝐶_{𝑅}(𝑋) 1986 R. D. Mehta
M. H. Vasavada