Localized Cluster Detection Applied to Joint and Separate Military and Veteran Subpopulations

Type: Article

Publication Date: 2013-03-23

Citations: 0

DOI: https://doi.org/10.5210/ojphi.v5i1.4414

Abstract

The study investigated combining Department of Defense (DoD) and Veterans Administration (VA) outpatient datasets for disease cluster detection. Results of retrospective scan statistics over 4 years were compared using both separate and joined data. Combining data sources increased the background alert rate by a manageable 1-10% across run sets. Clustering evidence of known outbreaks found in separate DoD and VA runs persisted when data sets were combined. Some clusters found only when the data were combined persisted over several days and may have indicated small events not reported in either system.

Locations

  • Online Journal of Public Health Informatics - View - PDF
  • Europe PMC (PubMed Central) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Evaluation of sliding baseline methods for spatial estimation for cluster detection in the biosurveillance system 2009 Jian Xing
Howard Burkom
Linda Moniz
James R. Edgerton
Michael R. Leuze
Jerome I. Tokars
+ Cluster Detection Mechanisms for Syndromic Surveillance Systems: Systematic Review and Framework Development (Preprint) 2018 Prosper Kandabongee Yeng
Ashenafi Zebene Woldaregay
Terje Solvoll
Gunnar Hartvigsen
+ PDF Chat Cluster Detection Mechanisms for Syndromic Surveillance Systems: Systematic Review and Framework Development 2020 Prosper Kandabongee Yeng
Ashenafi Zebene Woldaregay
Terje Solvoll
Gunnar Hartvigsen
+ Cluster Detection 2017 David C. Wheeler
+ Daily Reportable Disease Spatio-Temporal Cluster Detection in New York City 2016 Sharon K. Greene
+ Disease Clusters 2014 Clive E. Sabel
+ A brief evaluation of statistical methods for detecting disease clusters in time and/or space 2004 Karen Kafadar
Andy K. Kim
Sami A. Al-Rumaizan
Corey J. Ayala
Andrew J. Been
Jingjing Chen
Jason L. Cook
Gustavo Gibin Duarte
Catherine Durso
Co N. Huynh
+ PDF Chat Identifying geographic areas with high disease rates: when do confidence intervals for rates and a disease cluster detection method agree? 2006 Rhonda J. Rosychuk
+ A clustering environment for real-time tracking and analysis of Covid-19 case clusters 2021 Jayakrishnan Ajayakumar
Andrew Curtis
Andrew Curtis
+ Statistical Tests for Clustering and Surveillance 2016 Peter A. Rogerson
Geoffrey M. Jacquez
+ Space-time clustering of COVID-19 cases in the United States veteran population 2023 Danielle Richard
Julie A. Gazmararian
Alyssa R. Greenhouse
Anjali Khakharia
Lawrence S. Phillips
Lance A. Waller
+ Doubly-Robust Estimation of Effect of Imaging Resource Utilization on Discharge Decisions in Emergency Departments 2018 Azade Tabaie
Falgun H. Chokshi
Andre L. Holder
Shamim Nemati
+ PDF Chat Un enfoque diferente de las técnicas de clustering para el estudio de epidemias 1999 Gladys Casas Cardoso
Ricardo Grau Ábalo
+ Detection of emerging space-time clusters 2005 Daniel B. Neill
Andrew Moore
Maheshkumar Sabhnani
Kenny Daniel
+ PDF Chat Geographic Monitoring for Early Disease Detection (GeoMEDD) 2020 Andrew Curtis
Jayakrishnan Ajayakumar
Andrew Curtis
Sarah Mihalik
Maulik Purohit
Zachary Scott
James Muisyo
James Labadorf
Sorapat Vijitakula
Justin Yax
+ PDF Chat Geographic monitoring for early disease detection (GeoMEDD) 2020 Andrew Curtis
Jayakrishnan Ajayakumar
Andrew Curtis
Sarah Mihalik
Maulik Purohit
Zachary Scott
James Muisyo
James Labadorf
Sorapat Vijitakula
Justin Yax
+ PDF Chat Detecting Disease Outbreaks Using Local Spatiotemporal Methods 2011 Ying‐Qi Zhao
Donglin Zeng
Amy H. Herring
Amy Ising
Anna Waller
David B. Richardson
Michael R. Kosorok
+ Cluster Analysis 2017 Erik Mooi
Marko Sarstedt
Irma Mooi‐Reci
+ Prospective Detection of Outbreaks 2017 Benjamin Allévius
Michael Höhle
+ An overview of cluster analysis 2022 Ipek Keskin

Works That Cite This (0)

Action Title Year Authors