Type: Article
Publication Date: 1999-01-01
Citations: 13
DOI: https://doi.org/10.1023/a:1001721808335
Let X be the Fermat curve of degree q+1 over the field k of q elements, where q is some prime power. Considering the Jacobian J of X as a constant abelian variety over the function field k(X), we calculate the multiplicities, in subfactors of the Shafarevich–Tate group, of representations associated with the action on X of a finite unitary group. J is isogenous to a power of a supersingular elliptic curve E, the structure of whose Shafarevich–Tate group is also described.
Action | Title | Year | Authors |
---|---|---|---|
+ | None | 1999 |
Chantal David Francesco Pappalardi |
+ PDF Chat | None | 2023 | |
+ | None | 2005 |
Elmar Grosse-Klönne |
+ PDF Chat | None | 2016 | |
+ PDF Chat | None | 2023 | |
+ | None | 1997 |
Chen-Bo Zhu Jing-Song Huang |
+ | None | 1997 |
Vyjayanthi Chari Andrew Pressley |
+ PDF Chat | None | 2024 |
Beth Romano |
+ PDF Chat | None | 2002 |
O. M. Fomenko |
+ PDF Chat | None | 1997 |
Ken Ono |
+ | None | 2001 |
Genkai Zhang |
+ | None | 2005 |
Pavel Guerzhoy |
+ | None | 2001 |
Bjorn Poonen |
+ | None | 2012 |
Paola Supino |
+ PDF Chat | None | 2003 |
O. M. Fomenko |
+ PDF Chat | None | 2002 |
Joshua M. Lansky David Pollack |
+ PDF Chat | None | 2002 |
Viktor Ostrik |
+ PDF Chat | None | 2001 |
O. M. Fomenko |
+ | None | 1997 |
Samson Saneblidze |
+ | None | 2001 |
Vyjayanthi Chari |