Multivariate empirical characteristic functions

Type: Article

Publication Date: 1981-06-01

Citations: 62

DOI: https://doi.org/10.1007/bf00535160

Abstract

and specifically EYv(t ) Yv(s) = C(t-s)-C(t) C(-s).Just like in the univariate case ([17], [5], [26]), the finite-dimensional distributions of Y, converge by the multidimensional central limit theorem to those of Yr.But Y, does not always converge weakly in cg(S) to YF, since the latter process can be almost surely discontinuous for certain F's.When looking at these kind of properties of the Yr process, the following stochastic integral representation is useful.

Locations

  • Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete - View - PDF

Similar Works

Action Title Year Authors
+ Multivariate Distributions 2017 Wolfgang Karl Härdle
Ostap Okhrin
Yarema Okhrin
+ Random Variables: Multivariate Case 2021
+ Variation Rate of Multivariate Cumulative Function and Its Applications 2021 天勇 韩
+ Multivariate Probability Distributions: Applications and Risk Models 2012 Charles S. Tapiero
+ Characterization of multivariate heavy-tailed distribution families via copula 2011 Chengguo Weng
Yi Zhang
+ Continuous Multivariate Distributions 2004 N. Balakrishnan
+ Continuous Multivariate Distributions 2014 N. Balakrishnan
+ Continuous Multivariate Distributions 2004 N. Balakrishnan
+ Continuous Multivariate Distributions 2005 N. Balakrishnan
+ Characteristic property of a class of multivariate variance functions 2015 Abdelaziz Ghribi
Célestin C. Kokonendji
Afif Masmoudi
+ Multivariate GARCH and Conditional Correlation Models 2018 Massimo Guidolin
Manuela Pedio
+ Multivariate Discrete Distributions 2011 Anirban Dasgupta
+ Characterization of multivariate distributions through a functional equation of their characteristic functions 1997 Arjun K. Gupta
Truc T. Nguyen
Weibin Zeng
+ Multivariate Statistical Models 2015 David Ruppert
David S. Matteson
+ PDF Chat Multivariate Volatility Models 2012
+ PDF Chat Vector-valued multivariate conditional value-at-risk 2018 Merve Meraklı
Si̇mge Küçükyavuz
+ A Test of Multivariate Normality Using ECF ( Empirical Characteristic Function ) 1991 임태진
+ Multivariate Statistical Distributions 2012 Donald R. Jensen
+ Multivariate Statistical Distributions 2011 Donald R. Jensen
+ A consistent test for multivariate normality based on the empirical characteristic function 1988 Ludwig Baringhaus
Norbert Henze