An <i>H</i><sup>1</sup>‐Galerkin method for a Stefan problem with a quasilinear parabolic equation in non‐divergence form

Type: Article

Publication Date: 1987-01-01

Citations: 6

DOI: https://doi.org/10.1155/s0161171287000413

Abstract

Optimal error estimates in L 2 , H 1 and H 2 ‐norm are established for a single phase Stefan problem with quasilinear parabolic equation in non‐divergence form by an H 1 ‐Galerkin procedure.

Locations

  • International Journal of Mathematics and Mathematical Sciences - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ An H^1-Galerkin Nonconforming Mixed Finite Element Method for Integro-Differential Equation of Parabolic Type 2009 Shi
Dong
Yang
Wang
Hai Hai
Hong
+ An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg"><mml:msup><mml:mi>H</mml:mi><mml:mn>1</mml:mn></mml:msup></mml:math>-Galerkin mixed finite element method for identification of time dependent parameters in parabolic problems 2022 Morrakot Khebchareon
Ambit K. Pany
Amiya K. Pani
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> bounds in some non-standard nonlinear problems in partial differential equations 2006 Philip Schaefer
+ An optimal-order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si113.gif" overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>-error estimate for nonsymmetric discontinuous Galerkin methods for a parabolic equation in multiple space dimensions 2009 Kaixin Wang
Hong Wang
Shuyu Sun
Mary F. Wheeler
+ An H~1-Galerkin Mixed Finite Element Method for Nonlinear Parabolic Partial Integro-differential Equations 2008 H Chen
Dan‐Qian Xu
Xiang Liu
+ Corrigendum to “H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations” [Appl. Math. Comput. 212 (2009) 446–457] 2012 Yang Liu
Li Hong
+ An H~1-Galerkin mixed finite element method for semi-linear parabolic equation 2007 Huanqing Wang
+ Highly efficient H 1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation 2014 Dongyang Shi
Xin Liao
Qili Tang
+ GALERKIN SINGLE-STEP METHODS FOR SECOND-ORDER HYPERBOLIC EQUATIONS 1986 Ohannes A. Karakashian
+ On the Convergence of H1-Galerkin Mixed Finite Element Method for Parabolic Problems 2008 Madhusmita Tripathy
+ PDF Chat COLLOCATION-H-1-GALERKIN METHOD FOR SOME PARABOLIC EQUATIONS IN TWO SPACE VARIABLES 1982 Mitsuhiro T. Nakao
+ H1-Estimates of Optimal Orders for Galerkin Methods to One-Dimensional Stefan Problems 1996 Mi-Ray Ohm
+ Galerkin alternating-direction method for a kind of second-order quasi-linear hyperbolic problems 2007 Xiang Lai
Yirang Yuan
+ NON-STANDARD GALERKIN METHODS OF HIGH ACCURACY FOR PARABOLIC PROBLEMS 1997 张书华
姜忠炳
翟瑞彩
+ An approximation of the Galerkin method for quasi-linear equations of mathematical physics 1979 G. A. Khalikov
R. G. Shirgazin
+ GALERKIN METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH NONLOCAL BOUNDARY CONDITIONS 2010 Baili Chen
+ A METHOD OF GALERKIN TYPE ACHIEVING OPTIMUM L2 ACCURACY FOR FIRST ORDER HYPERBOLICS AND EQUATIONS OF SCHRÖDINGER TYPE 1972 J. E. Dendy
+ The maximum norm analysis of a nonmatching grids method for a class of parabolic equation 2018 Boulaares salah
Bahi mohammed cherif
Mohamed Haiour
Abderrahmane Zaraï
+ A NEWTON MULTIGRID METHOD FOR QUASILINEAR PARABOLIC EQUATIONS 2005
Xijun
+ PDF Chat Quasilinear parabolic equations with first order terms and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si3.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-data in moving domains 2021 Đỗ Lân
Dang Thanh Son
Bao Quoc Tang
Lê Thị Thủy