Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
High-dimensional Covariance Estimation Based On Gaussian Graphical Models
Shuheng Zhou
,
Philipp RĂŒtimann
,
Min Xu
,
Peter BĂŒhlmann
Type:
Article
Publication Date:
2011-02-01
Citations:
95
Share
Similar Works
Action
Title
Year
Authors
+
High-dimensional covariance estimation based on Gaussian graphical models
2010
Shuheng Zhou
Philipp RĂŒtimann
Min Xu
Peter BĂŒhlmann
+
High-dimensional Covariance Estimation Based On Gaussian Graphical Models
2011
ZhouShuheng
RĂŒtimannPhilipp
XuMin
BĂŒhlmannPeter
+
High-dimensional graph estimation and density estimation
2016
Zhe Liu
+
High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence
2008
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
+
PDF
Chat
High-dimensional covariance estimation by minimizing â1-penalized log-determinant divergence
2011
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
+
Inference in high-dimensional graphical models
2018
Jana JankovĂĄ
Sara van de Geer
+
Inference in high-dimensional graphical models
2018
Jana JankovĂĄ
Sara van de Geer
+
High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods
2012
Christopher C. Johnson
Ali Jalali
Pradeep Ravikumar
+
High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods
2011
Christopher C. Johnson
Ali Jalali
Pradeep Ravikumar
+
High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods
2011
Christopher C. Johnson
Ali Jalali
Pradeep Ravikumar
+
Quadratic Sparse Gaussian Graphical Model Estimation Method for Massive Variables
2020
Jiaqi Zhang
Meng Wang
Qinchi Li
Sen Wang
Xiaojun Chang
Beilun Wang
+
PDF
Chat
High dimensional sparse covariance estimation via directed acyclic graphs
2009
Philipp RĂŒtimann
Peter BĂŒhlmann
+
PDF
Chat
Two new algorithms for maximum likelihood estimation of sparse covariance matrices with applications to graphical modeling
2024
Ghania Fatima
Prabhu Babu
Petre Stoica
+
PDF
Chat
A Stepwise Approach for High-Dimensional Gaussian Graphical Models
2021
Ruben H. Zamar
Marcelo Ruiz
Ginette Lafit
Javier Nogales
+
Optimization Methods for Sparse Pseudo-Likelihood Graphical Model Selection
2014
Sang Min Oh
Onkar Dalal
Kshitij Khare
Bala Rajaratnam
+
Two new algorithms for maximum likelihood estimation of sparse covariance matrices with applications to graphical modeling
2023
Ghania Fatima
Prabhu Babu
Petre Stoica
+
Interaction estimations in high-dimensional statistical models
2020
Lizhu Tao
+
Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of boldmathell_1-regularized MLE
2008
Garvesh Raskutti
Bin Yu
Martin J. Wainwright
Pradeep Ravikumar
+
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
2013
ChoâJui Hsieh
MĂĄtyĂĄs A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
+
Elementary Estimators for Graphical Models
2014
Eunho Yang
Aurélie Lozano
Pradeep Ravikumar
Works That Cite This (69)
Action
Title
Year
Authors
+
PDF
Chat
Multiple Matrix Gaussian Graphs Estimation
2018
Yunzhang Zhu
Lexin Li
+
Ensemble sparse estimation of covariance structure for exploring genetic disease data
2021
Xiaoning Kang
Mingqiu Wang
+
A procedure of linear discrimination analysis with detected sparsity structure for high-dimensional multi-class classification
2020
Shan Luo
Zehua Chen
+
Regularized rank-based estimation of high-dimensional nonparanormal graphical models
2012
Lingzhou Xue
Hui Zou
+
Gemini: Graph estimation with matrix variate normal instances
2014
Shuheng Zhou
+
Joint mean and covariance estimation with unreplicated matrix-variate data
2016
Michael Hornstein
Roger Fan
Kerby Shedden
Shuheng Zhou
+
PDF
Chat
Reconstruction From Anisotropic Random Measurements
2013
Mark Rudelson
Shuheng Zhou
+
High-dimensional Precision Matrix Estimation with a Known Graphical Structure
2021
ThienâMinh Le
PingâShou Zhong
+
PDF
Chat
Highâdimensional precision matrix estimation with a known graphical structure
2021
ThienâMinh Le
PingâShou Zhong
+
Gene network reconstruction using global-local shrinkage priors
2017
Gwenaël G. R. Leday
Mathisca C. M. de Gunst
Gino B. Kpogbezan
Aad van der Vaart
Wessel N. van Wieringen
Mark A. van de Wiel
Works Cited by This (38)
Action
Title
Year
Authors
+
Thresholded Lasso for high dimensional variable selection and statistical estimation
2010
Shuheng Zhou
+
PDF
Chat
Chi-square oracle inequalities
2001
Iain M. Johnstone
+
Restricted Eigenvalue Conditions on Subgaussian Random Matrices
2009
Shuheng Zhou
+
The adaptive and the thresholded Lasso for potentially misspecified models
2010
Sara van de Geer
Peter BĂŒhlmann
Shuheng Zhou
+
Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling
2009
Shuheng Zhou
Sara van de Geer
Peter BĂŒhlmann
+
PDF
Chat
Time varying undirected graphs
2010
Shuheng Zhou
John Lafferty
Larry Wasserman
+
PDF
Chat
Estimation of a covariance matrix with zeros
2007
Subhajyoti Chaudhuri
Mathias Drton
Thomas S. Richardson
+
PDF
Chat
A Constrained<i>â</i><sub>1</sub>Minimization Approach to Sparse Precision Matrix Estimation
2011
Tommaso Cai
Weidong Liu
Xi Luo
+
Nonparametric estimation of large covariance matrices of longitudinal data
2003
Wei Biao Wu
+
A note on the Lasso for Gaussian graphical model selection
2007
Nicolai Meinshausen