Values of Brownian intersection exponents, II: Plane exponents

Type: Article

Publication Date: 2001-01-01

Citations: 380

DOI: https://doi.org/10.1007/bf02392619

Abstract

Theoretical physics predicts that conformal invariance plays a crucial role in the macroscopic behavior of a wide class of two-dimensional models in statistical physics (see, e.g., [4], [6]). For instance, by making the assumption that critical planar percolation behaves in a conformally invariant way in the scaling limit, and using ideas involving conformal field theory, Cardy [7] produced an exact formula for the limit, as N → ∞, of the probability that, in two-dimensional critical percolation, there exists a cluster crossing the rectangle [0, aN] × [0, bN]. Also, Duplantier and Saleur [13] predicted the “fractal dimension” of the hull of a very large percolation cluster. These are just two examples among many such predictions.

Locations

  • Acta Mathematica - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Values of Brownian intersection exponents, II: Plane exponents 2011 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ Values of Brownian intersection exponents, I: Half-plane exponents 2011 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ PDF Chat Values of Brownian intersection exponents, I: Half-plane exponents 2001 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ Values of Brownian intersection exponents II: Plane exponents 2000 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ PDF Chat Universality for conformally invariant intersection exponents 2000 Gregory F. Lawler
Wendelin Werner
+ PDF Chat Analyticity of intersection exponents for planar Brownian motion 2002 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ Values of Brownian intersection exponents I: Half-plane exponents 1999 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ PDF Chat Intersection Exponents for Planar Brownian Motion 1999 Wendelin Werner
Gregory F. Lawler
+ Analyticity of intersection exponents for planar Brownian motion 2000 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ Brownian intersection exponent 2008 Gregory F. Lawler
+ PDF Chat Intersection Exponents for Planar Brownian Motion 1999 Gregory F. Lawler
Wendelin Werner
+ Critical exponents, conformal invariance and planar Brownian motion 2000 Wendelin Werner
+ PDF Chat Critical Exponents, Conformal Invariance and Planar Brownian Motion 2001 Wendelin Werner
+ PDF Chat Values of Brownian intersection exponents III: Two-sided exponents 2002 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ SELF-AFFINE FRACTAL SETS, II: LENGTH AND SURFACE DIMENSIONS 1986 Benoît B. Mandelbrot
+ PDF Chat Sharp Estimates for Brownian Non-intersection Probabilities 2002 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ Sharp estimates for Brownian non-intersection probabilities 2001 Greg Lawler
Oded Schramm
Wendelin Werner
+ PDF Chat Annulus crossing formulae for critical planar percolation 2024 Xin Sun
Sheng Xu
Zijie Zhuang
+ PDF Chat Strict Concavity of the Half Plane Intersection Exponent for Planar Brownian Motion 2000 Gregory F. Lawler
+ On conformally invariant subsets of the planar Brownian curve 2001 Vincent Beffara