An Algorithmic Version of the Hypergraph Regularity Method

Type: Article

Publication Date: 2005-11-15

Citations: 13

DOI: https://doi.org/10.1109/sfcs.2005.17

Similar Works

Action Title Year Authors
+ An Algorithmic Version of the Hypergraph Regularity Method 2008 Penny Haxell
Brendan Nagle
V. Rödl
+ The hypergraph regularity method and its applications 2005 V. Rödl
Brendan Nagle
Jozef Skokan
Mathias Schacht
Yoshiharu Kohayakawa
+ A Tight Bound for Hypergraph Regularity II 2018 Guy Moshkovitz
A. Shapira
+ A Tight Bound for Hypergraph Regularity II 2018 Guy Moshkovitz
A. Shapira
+ A Tight Bound for Hypergraph Regularity I 2018 Guy Moshkovitz
A. Shapira
+ PDF Chat A Tight Bound for Hyperaph Regularity 2019 Guy Moshkovitz
A. Shapira
+ An Algorithmic Hypergraph Regularity Lemma 2015 Brendan Nagle
Vojtěch Rödl
Mathias Schacht
+ An algorithmic hypergraph regularity lemma 2016 Brendan Nagle
Vojtěch Rödl
Mathias Schacht
+ A Tight Bound for Hyperaph Regularity 2019 Guy Moshkovitz
A. Shapira
+ PDF Chat Growth of regular partitions 3: strong regularity and the vertex partition 2024 C. Terry
+ An algorithmic hypergraph regularity lemma 2017 Brendan Nagle
Vojtěch Rödl
Mathias Schacht
+ PDF Chat Regular Partitions of Hypergraphs: Regularity Lemmas 2007 Vojtěch Rödl
Mathias Schacht
+ PDF Chat Growth of regular partitions 2: Weak regularity 2024 C. Terry
+ PDF Chat An Efficient Regularity Lemma for Semi-Algebraic Hypergraphs 2024 Natan Rubin
+ The counting lemma for regular k-uniform hypergraphs 2006 Brendan Nagle
Vojtěch Rödl
Mathias Schacht
+ PDF Chat Regular Partitions of Hypergraphs: Counting Lemmas 2007 Vojtěch Rödl
Mathias Schacht
+ PDF Chat A Polynomial Regularity Lemma for Semialgebraic Hypergraphs and Its Applications in Geometry and Property Testing 2016 Jacob Fox
János Pach
Andrew Suk
+ PDF Chat Counting substructures II: Hypergraphs 2013 Dhruv Mubayi
+ Regular Partitions of Hypergraphs 2007 RödlVojtěch
SchachtMathias
+ On regularity lemmas and their applications 2016 Jacob Fox
László Lovász
Yufei Zhao