Energy density functional analysis of shape evolution in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>28</mml:mn></mml:mrow></mml:math>isotones

Type: Article

Publication Date: 2011-11-03

Citations: 72

DOI: https://doi.org/10.1103/physrevc.84.054304

Abstract

The structure of low-energy collective states in proton-deficient $N=28$ isotones is analyzed using structure models based on the relativistic energy density functional DD-PC1. The relativistic Hartree-Bogoliubov model for triaxial nuclei is used to calculate binding energy maps in the $\ensuremath{\beta}$-$\ensuremath{\gamma}$ plane. The evolution of neutron and proton single-particle levels with quadrupole deformation, and the occurrence of gaps around the Fermi surface, provide a simple microscopic interpretation of the onset of deformation and shape coexistence. Starting from self-consistent constrained energy surfaces calculated with the functional DD-PC1, a collective Hamiltonian for quadrupole vibrations and rotations is employed in the analysis of excitation spectra and transition rates of ${}^{46}$Ar, ${}^{44}$S, and ${}^{42}$Si. The results are compared to available data, and previous studies based either on the mean-field approach or large-scale shell-model calculations. The present study is particularly focused on ${}^{44}$S, for which data have recently been reported that indicate pronounced shape coexistence.

Locations

  • Physical Review C - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Microscopic analysis of nuclear quantum phase transitions in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="bold-italic">N</mml:mi><mml:mo>≈</mml:mo><mml:mn>90</mml:mn></mml:mrow></mml:math>region 2009 Z. P. Li
Tamara Nikšić
D. Vretenar
J. Meng
G. A. Lalazissis
Peter Smith Ring
+ Nuclear shape / phase transitions in the N = 40, 60, 90 regions 2024 D. Petrellis
Adam Prášek
P. Alexa
Dennis Bonatsos
G. Thiamová
P. Veselý
+ PDF Chat Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei 2018 J. Xiang
Z. P. Li
Wen Hui Long
Tamara Nikšić
D. Vretenar
+ PDF Chat Relativistic energy density functional description of shape transitions in superheavy nuclei 2012 V. Prassa
T. Nikšić
G. A. Lalazissis
D. Vretenar
+ PDF Chat Triaxial-shape dynamics in the low-lying excited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mn>0</mml:mn><mml:mo>+</mml:mo></mml:msup></mml:math> state: Role of the collective mass 2023 Kouhei Washiyama
Kenichi Yoshida
+ PDF Chat Evidence for shape coexistence in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mn>98</mml:mn></mml:msup></mml:math>Mo 2013 T. Thomas
K. Nomura
V. Werner
T. Ahn
Natalie Cooper
H. Duckwitz
M. Hinton
Gabriela Ilie
J. Jolie
P. Petkov
+ PDF Chat Shape coexistence and collective low-spin states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Sn</mml:mi><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>112</mml:mn><mml:mo>,</mml:mo><mml:mn>114</mml:mn></mml:mrow></mml:mmultiscripts></mml:math> studied with the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>p</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mi>γ</mml:… 2018 M. Spieker
P. Petkov
Елена Литвинова
C. Müller-Gatermann
S. G. Pickstone
S. Prill
Philipp Scholz
A. Zilges
+ Ferro-deformation and shape coexistence over the nuclear chart: 28 &lt; protons (Z) &lt; 50 and 40 &lt; neutrons (N) &lt; 70 2016 Chang-Bum Moon
+ Shell-model study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Si</mml:mi><mml:mprescripts/><mml:none/><mml:mn>28</mml:mn></mml:mmultiscripts></mml:math> : Coexistence of oblate, prolate, and superdeformed shapes 2024 Dorian Frycz
J. Menéndez
A. Rios
B. Bally
T. Rodrı́guez
A. M. Romero
+ PDF Chat Triaxial quadrupole deformation dynamics in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="italic">sd</mml:mi></mml:mrow></mml:math>-shell nuclei around<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts><mml:mi mathvariant="normal">Mg</mml:mi><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>26</mml:mn></mml:mrow></mml:mmultiscripts></mml:math> 2011 Nobuo Hinohara
Yoshiko Kanada-En’yo
+ Ferro-deformation and shape coexistence over the nuclear chart: 28 < protons (Z) < 50 and 40 < neutrons (N) < 70 2016 Chang-Bum Moon
+ Ferro-deformation and shape phase transitions over the nuclear chart: 50 &lt; protons (Z) &lt; 82 and 50 &lt; neutrons (N) &lt; 126 2016 Chang-Bum Moon
+ Ferro-deformation and shape phase transitions over the nuclear chart: 50 < protons (Z) < 82 and 50 < neutrons (N) < 126 2016 Chang-Bum Moon
+ PDF Chat Islands of shape coexistence from single-particle spectra in covariant density functional theory 2022 Dennis Bonatsos
Konstantinos Karakatsanis
Andriana Martinou
T. J. Mertzimekis
N. Minkov
+ PDF Chat Collective-model description of shape coexistence and intruder states in cadmium isotopes based on a relativistic energy density functional 2022 K. Nomura
Konstantinos Karakatsanis
+ PDF Chat Structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">P</mml:mi><mml:mprescripts /><mml:none /><mml:mn>43</mml:mn></mml:mmultiscripts></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">Si</mml:mi><mml:mprescripts /><mml:none /><mml:mn>42</mml:mn></mml:mmultiscripts></mml:math> in a two-level shape-coexistence model 2022 A. O. Macchiavelli
H. L. Crawford
C. M. Campbell
R. M. Clark
M. Cromaz
P. Fallon
I. Y. Lee
A. Gade
A. Poves
E. Rice
+ MICROSCOPIC DYNAMICS OF SHAPE COEXISTENCE PHENOMENA AROUND <sup>68</sup><font>Se</font> AND <sup>72</sup><font>Kr</font> 2008 Nobuo Hinohara
Takashi Nakatsukasa
Masayuki Matsuo
Kenichi Matsuyanagi
+ PDF Chat Properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>90</mml:mn></mml:mrow></mml:math>isotones within the mean field perspective 2014 E. Ganioğlu
R. Wyss
Piotr Magierski
+ PDF Chat SHAPE COEXISTENCE IN N = 14 ISOTONES: <sup>19</sup>B, <sup>24</sup>NE AND <sup>28</sup>SI 2003 Yoshiko Kanada-En’yo
+ PDF Chat Shape phase transitions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>odd</mml:mi><mml:mtext>−</mml:mtext><mml:mi>A</mml:mi></mml:mrow></mml:math> Zr isotopes 2020 K. Nomura
Tamara Nikšić
D. Vretenar

Works That Cite This (45)

Action Title Year Authors
+ PDF Chat Triaxially deformed relativistic point-coupling model for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Λ</mml:mi></mml:math>hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties 2015 Wenting Xue
J. M. Yao
K. Hagino
Z. P. Li
H. Mei
Yusuke Tanimura
+ PDF Chat Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei 2018 J. Xiang
Z. P. Li
Wen Hui Long
Tamara Nikšić
D. Vretenar
+ PDF Chat Microscopic description of triaxiality in Ru isotopes with covariant energy density functional theory 2018 Zhi Shi
Z. P. Li
+ PDF Chat Global performance of multireference density functional theory for low-lying states in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:mi>d</mml:mi></mml:mrow></mml:math>-shell nuclei 2015 Xian-Ye Wu
Xian-Rong Zhou
+ PDF Chat Coexistence of nuclear shapes: self-consistent mean-field and beyond 2016 Z. P. Li
Tamara Nikšić
D. Vretenar
+ PDF Chat Nature of Isomerism in Exotic Sulfur Isotopes 2015 Y. Utsuno
Noritaka Shimizu
Takaharu Otsuka
Tooru Yoshida
Y. Tsunoda
+ PDF Chat Tensor force and shape evolution of Si isotopes in the Skyrme–Hartree–Fock model 2013 Ang Li
Xing Zhou
H. Sagawa
+ PDF Chat Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods 2017 Z. X. Ren
Shuangquan Zhang
J. Meng
+ PDF Chat Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian 2012 Z. P. Li
C.Y. Li
J. Xiang
J. M. Yao
J. Meng
+ PDF Chat Superheavy nuclei in a microscopic collective Hamiltonian approach: The impact of beyond-mean-field correlations on ground state and fission properties 2019 Zhi Shi
A. V. Afanasjev
Z. P. Li
J. Meng

Works Cited by This (24)

Action Title Year Authors
+ PDF Chat 3D relativistic Hartree-Bogoliubov model with a separable pairing interaction: Triaxial ground-state shapes 2010 T. Nikšić
Peter Smith Ring
D. Vretenar
Yuan Tian
Zhongyu Ma
+ PDF Chat The shell closure; from to the neutron drip line 2004 E. Caurier
F. Nowacki
A. Poves
+ PDF Chat Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions 2010 J. M. Yao
J. Meng
P. Ring
D. Vretenar
+ PDF Chat Shell model study of the neutron-rich nuclei around<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>28</mml:mn><mml:mn /></mml:math> 1997 J. Retamosa
E. Caurier
F. Nowacki
A. Poves
+ PDF Chat Relativistic Hartree+Bogoliubov description of the deformed<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>28</mml:mn><mml:mn /></mml:math>region 1999 G. A. Lalazissis
D. Vretenar
P. Ring
M. V. Stoitsov
L. M. Robledo
+ PDF Chat Configuration mixing of angular-momentum and particle-number projected triaxial Hartree-Fock-Bogoliubov states using the Skyrme energy density functional 2008 M. Bender
P.-H. Heenen
+ PDF Chat Triaxial angular momentum projection and configuration mixing calculations with the Gogny force 2010 T. Rodrı́guez
J.L. Egido
+ PDF Chat Collapse of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>28</mml:mn></mml:math>Shell Closure in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts><mml:mi mathvariant="normal">S</mml:mi><mml:mprescripts /><mml:none /><mml:mn>42</mml:mn></mml:mmultiscripts><mml:mi mathvariant="normal">i</mml:mi></mml:math> 2007 B. Bastin
S. Grévy
D. Sohler
O. Sorlin
Zs. Dombràdi
N. L. Achouri
J. C. Angélique
F. Azaiez
D. Baiborodin
R. Borcea
+ A finite range pairing force for density functional theory in superfluid nuclei 2009 Yuan Tian
Z. Ma
P. Ring
+ PDF Chat Microscopic analysis of nuclear quantum phase transitions in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="bold-italic">N</mml:mi><mml:mo>≈</mml:mo><mml:mn>90</mml:mn></mml:mrow></mml:math>region 2009 Z. P. Li
Tamara Nikšić
D. Vretenar
J. Meng
G. A. Lalazissis
Peter Smith Ring