Scalar curvature and $Q$-curvature of random metrics

Type: Article

Publication Date: 2010-07-01

Citations: 0

DOI: https://doi.org/10.3934/era.2010.17.43

Abstract

We study Gauss curvature for random Riemannian metrics on a compact surface,lying in a fixed conformal class; our questions are motivated by comparisongeometry. We next consider analogous questions for the scalar curvature indimension $n>2$, and for the $Q$-curvature of random Riemannian metrics.

Locations

  • Electronic Research Announcements - View - PDF
  • arXiv (Cornell University) - View - PDF
  • ORCA Online Research @Cardiff (Cardiff University) - View - PDF

Similar Works

Action Title Year Authors
+ Scalar curvature and $Q$-curvature of random metrics 2010 Yaiza Canzani
Dmitry Jakobson
Igor Wigman
+ Scalar curvature and $Q$-curvature of random metrics 2010 Yaiza Canzani
Dmitry Jakobson
Igor Wigman
+ PDF Chat Scalar Curvature and Q-Curvature of Random Metrics 2013 Yaiza Canzani
Dmitry Jakobson
Igor Wigman
+ PDF Chat On the curvatures of random complex submanifolds 2024 Michele Ancona
Damien Gayet
+ PDF Chat Gaussian curvature on random planar maps and Liouville quantum gravity 2024 Andres Contreras Hip
Ewain Gwynne
+ A Cosine Rule-Based Discrete Sectional Curvature for Graphs 2022 Jéan Du Plessis
Xerxes D. Arsiwalla
+ PDF Chat A cosine rule-based discrete sectional curvature for graphs 2023 Jéan Du Plessis
Xerxes D. Arsiwalla
+ Ollivier curvature of random geometric graphs converges to Ricci curvature of their Riemannian manifolds 2020 Pim van der Hoorn
Gábor Lippner
Carlo A. Trugenberger
Dmitri Krioukov
+ Curvature and statistics 2013 Yu Wang
+ Metrics and Curvature 2023 Parvaneh Joharinad
Jürgen Jost
+ PDF Chat Ollivier Curvature of Random Geometric Graphs Converges to Ricci Curvature of Their Riemannian Manifolds 2023 Pim van der Hoorn
Gábor Lippner
Carlo A. Trugenberger
Dmitri Krioukov
+ Scalar curvature for metric spaces: Defining curvature for Quantum Gravity without coordinates 2023 A. Da Silva
Jesse van der Duin
+ What is a random surface? 2022 Scott Sheffield⋆
+ Generalized Curvatures 2008 Jean‐Marie Morvan
+ What is a random surface? 2023 Scott Sheffield⋆
+ Metric measure spaces and Ricci curvature — analytic, geometric, and probabilistic challenges 2016
+ Non-Riemannian Curvatures 2001
+ Riemannian Geometry 1990 Sylvestre Gallot
Dominique Hulin
Jacques Lafontaine
+ Discrete Ricci curvature of metric spaces and Markov chains 2008 Yann Ollivier
+ Riemannian Geometry 2006 Isaac Chavel

Works That Cite This (0)

Action Title Year Authors