Intrinsic Polynomials for Regression on Riemannian Manifolds

Type: Article

Publication Date: 2014-02-21

Citations: 82

DOI: https://doi.org/10.1007/s10851-013-0489-5

Abstract

We develop a framework for polynomial regression on Riemannian manifolds. Unlike recently developed spline models on Riemannian manifolds, Riemannian polynomials offer the ability to model parametric polynomials of all integer orders, odd and even. An intrinsic adjoint method is employed to compute variations of the matching functional, and polynomial regression is accomplished using a gradient-based optimization scheme. We apply our polynomial regression framework in the context of shape analysis in Kendall shape space as well as in diffeomorphic landmark space. Our algorithm is shown to be particularly convenient in Riemannian manifolds with additional symmetry, such as Lie groups and homogeneous spaces with right or left invariant metrics. As a particularly important example, we also apply polynomial regression to time-series imaging data using a right invariant Sobolev metric on the diffeomorphism group. The results show that Riemannian polynomials provide a practical model for parametric curve regression, while offering increased flexibility over geodesics.

Locations

  • arXiv (Cornell University) - PDF
  • Journal of Mathematical Imaging and Vision - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Polynomial Regression on Riemannian Manifolds 2012 Jacob Hinkle
Prasanna Muralidharan
P. Thomas Fletcher
Sarang Joshi
+ Polynomial Regression on Riemannian Manifolds 2012 Jacob Hinkle
Prasanna Muralidharan
P. Thomas Fletcher
Sarang Joshi
+ Polynomial Regression on Riemannian Manifolds 2012 Jacob Hinkle
Prasanna Muralidharan
P. Thomas Fletcher
Sarang Joshi
+ A map estimation algorithm for Bayesian polynomial regression on riemannian manifolds 2017 Prasanna Muralidharan
Jacob Hinkle
P. Thomas Fletcher
+ PDF Chat Nonlinear Regression on Manifolds for Shape Analysis using Intrinsic BĂ©zier Splines 2020 Martin Hanik
Hans‐Christian Hege
Anja Hennemuth
Christoph von Tycowicz
+ Multivariate Intrinsic Local Polynomial Regression on Isometric Riemannian Manifolds: Applications to Positive Definite Data 2023 Ronaldo GarcĂ­a Reyes
Ying Wang
Min Li
Marlis Ontiviero Ortega
Deirel Paz-Linares
Lidice GalĂĄn GarcĂ­a
Pedro Antonio Valdez Sosa
+ Intrinsic semi-parametric regression model on Grassmannian manifolds with applications 2022 Xuanxuan Sheng
Di Xiong
Shihui Ying
+ Parametric Regression on the Grassmannian 2016 Yi Hong
Roland Kwitt
Nikhil Singh
Nuno Vasconcelos
Marc Niethammer
+ Parametric Regression on the Grassmannian 2015 Hong Yi
Nikhil Singh
Roland Kwitt
Nuno Vasconcelos
Marc Niethammer
+ A Surface-Theoretic Approach for Statistical Shape Modeling 2019 Felix Ambellan
Stefan Zachow
Christoph von Tycowicz
+ Time-Warped Geodesic Regression 2014 Yi Hong
Nikhil Singh
Roland Kwitt
Marc Niethammer
+ Wrapped Gaussian Process Regression on Riemannian Manifolds 2018 Anton Mallasto
Aasa Feragen
+ Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape 2023 Ye Han
Jared Vicory
Guido Gerig
Patricia Sabin
Hannah Dewey
Silvani Amin
Ana Sulentic
Christian Hertz
Matthew A. Jolley
Beatriz Paniagua
+ PDF Chat PRINCIPAL POLYNOMIAL ANALYSIS 2014 Valero Laparra
Sandra Jiménez
Devis Tuia
Gustau Camps‐Valls
JesĂșs Malo
+ Nonparametric Inference on Manifolds: With Applications to Shape Spaces 2012 Abhishek Bhattacharya
Rabi Bhattacharya
+ Shape Analysis of Functional Data With Elastic Partial Matching 2021 Darshan Bryner
Anuj Srivastava
+ PDF Chat Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds 2023 Seth D. Axen
Mateusz Baran
Ronny Bergmann
Krzysztof Rzecki
+ Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds 2021 Seth D. Axen
Mateusz Baran
Ronny Bergmann
Krzysztof Rzecki
+ Extrinsic Gaussian Processes for Regression and Classification on Manifolds 2018 Lizhen Lin
Mu Niu
Pokman Cheung
David B. Dunson
+ Extrinsic Gaussian processes for regression and classification on manifolds 2017 Lizhen Lin
Mu Niu
Pokman Cheung
David B. Dunson