On the zeros of the Riemann zeta function in the critical strip. II

Type: Article

Publication Date: 1982-01-01

Citations: 30

DOI: https://doi.org/10.1090/s0025-5718-1982-0669660-1

Abstract

We describe extensive computations which show that Riemann’s zeta function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="zeta left-parenthesis s right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\zeta (s)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has exactly 200,000,001 zeros of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma plus"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>+</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\sigma +</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the region <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 greater-than t greater-than 81 comma 702 comma 130.19"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>81</mml:mn> <mml:mo>,</mml:mo> <mml:mn>702</mml:mn> <mml:mo>,</mml:mo> <mml:mn>130.19</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">0 &gt; t &gt; 81,702,130.19</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; all these zeros are simple and lie on the line <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma equals one half"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding="application/x-tex">\sigma = \frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. (This extends a similar result for the first 81,000,001 zeros, established by Brent in <italic>Math. Comp.</italic>, v. 33, 1979, pp. 1361-1372.) Counts of the numbers of Gram blocks of various types and the failures of "Rosser’s rule" are given.

Locations

  • Mathematics of Computation - View - PDF
  • CWI's Institutional Repository (Centrum Wiskunde & Informatica) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the zeros of the Riemann zeta function in the critical strip. III 1983 J. Lune
H. J. J. te Riele
+ PDF Chat On the zeros of the Riemann zeta function in the critical strip 1979 Richard P. Brent
+ PDF Chat On the zeros of the Riemann zeta function in the critical strip. IV 1986 J. van de Lune
H. J. J. Te Riele
D.T. Winter
+ Corrigenda: 'On the zeros of the Riemann zeta function in the critical strip III' 1986 H.J.J. teRiele
+ Corrigenda: 'On the zeros of the Riemann zeta function in the critical strip III' 1986 te Herman Riele
+ On the Zeros of Riemann’s Zeta-Function on the Critical Line 1991 A. A. Karatsuba
+ PDF Chat On the integer part of the reciprocal of the Riemann zeta function tail at certain rational numbers in the critical strip 2019 WonTae Hwang
Kyunghwan Song
+ On the zeros of Riemann's zeta-function on the critical line 2016 Siegfred Baluyot
+ On the critical strip of the Riemann zeta-function 2014 Niels Gleinig
Francesc Bars
+ On the Zeros of the Riemann Zeta Function(II) 2003 Akio Fujii
+ PDF Chat The mean square of the Riemann zeta-function in the critical strip II 1994 Kohji Matsumoto
Tom Meurman
+ The mean square of the Riemann zeta-function in the critical strip III 1993 Kohji Matsumoto
Tom Meurman
+ On zeros of the Riemann zeta function 2021 Xiaolong Wu
+ A lower bound for the zeros of riemann’s zeta function on the critical line 2006 Enrico Bombieri
+ Explicit bounds on $ζ(s)$ in the critical strip and a zero-free region 2023 Andrew Yang
+ PDF Chat The Zeros of Riemann's Zeta-Function on the Critical Line 1926 M. Fekete
+ PDF Chat On the Zeros of the Riemann Zeta Function in the Critical Strip. III 1983 J. Lune
H. J. J. te Riele
+ A study of the Riemann zeta function 2017 Yochay Jerby
+ On the zeros of the Riemann zeta function 2008 Jorma Jormakka
+ On the zeros of the Riemann zeta function 2008 Jorma Jormakka