The numerical integration of ordinary differential equations

Type: Article

Publication Date: 1967-01-01

Citations: 171

DOI: https://doi.org/10.1090/s0025-5718-1967-0225494-5

Abstract

Multistep methods for initial value problems are expressed in a matrix form. The application of such methods to higher-order equations is studied with the result that new techniques for both first- and higher-order equations are found. The direct approach to higher-order equations is believed to offer speed and accuracy advantages; some numerical evidence is presented. The new technique applied to first-order equations is a slight extension of the conventional multistep method and avoids the Dahlquist [2] stability theorem, that is, these new <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-step methods are of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 k"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and yet convergent. The matrix formalism introduced provides an easy mechanism for examining the equivalence of methods as introduced by Descloux [3]. It is pointed out that the new first-order method on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>- steps, Adams’ method on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 2 k minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(2k - 1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-steps and Nordsieck’s [7] method with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 k"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> components are equivalent to each other. In fact, all methods discussed can be placed in equivalence classes so that theorems need only be proved for one member of each class. The choice between the members of a class can be made on the basis of round-off errors and amount of computation only. Arguments are given in favor of the extension of Nordsieck’s method for general use because of its speed and applicability to higher order problems directly. The theorems ensuring convergence and giving the asymptotic form of the error are stated. The proofs can be found in a cited report.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Numerical Integration of Ordinary Differential Equations 1967 C. W. Gear
+ PDF Chat Inverse linear multistep methods for the numerical solution of initial value problems of ordinary differential equations 1979 Peter Alfeld
+ Differential Equations 1989 Peter Turner
+ PDF Chat Exponential fitting of matricial multistep methods for ordinary differential equations 1974 E. F. Sarkany
W. Liniger
+ Numerical integration of ordinary differential equations 2010 Michael R. King
Nipa A. Mody
+ Numerical Solution of Ordinary Differential Equations 2021 Ashish Tewari
+ A multi-step method for the numerical integration of ordinary differential equations 1972 Riaz A. Usmani
+ Numerical Solution of Ordinary Differential Equations 2011
+ Implementation and Development of Multistep Algorithm Arising in Applied Sciences and Engineering 2014 Mohamad Mukheef Abed
Zenab Hasan
Sam Higginbottom
+ A method for the numerical integration of first-order differential equations 1950 D. R. Hartree
+ Numerical Differential Equations 2016 James K. Peterson
+ Numerical methods 2014 Anders Rasmuson
Bengt Andersson
Louise Olsson
Ronnie Andersson
+ PDF Chat Numerical Integration of Differential Equations 1999
+ PDF Chat Numerical Integration of Differential Equations 2006
+ The Numerical Approach 2004 Richard H. Enns
George C. McGuire
+ PDF Chat Linear multistep methods for stable differential equations 𝑦̈=𝐴𝑦+𝐵(𝑡)𝑦̇+𝑐(𝑡) 1982 Eckart W. Gekeler
+ Ordinary Differential Equations 2019 Kenneth B. Howell
+ Numerical Integration of Ordinary Differential Equations 2013 Thomas E. Hull
+ Numerical Integration of Ordinary Differential Equations 2017 William Bober
+ PDF Chat NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 2022 A. Askarova
Gripp Ye.
G. Yeleussizova

Works That Cite This (64)

Action Title Year Authors
+ Variable Order Block Method for Solving Second Order Ordinary Differential Equations 2019 Zarina Bibi İbrahim
Nooraini Zainuddin
Khairil Iskandar Othman
Mohamed Suleiman
Iskandar Shah Mohd Zawawi
+ PDF Chat New Efficient Numerical Model for Solving Second, Third and Fourth Order Ordinary Differential Equations Directly 2020 Bamikole Gbenga Ogunware
O. E. Abolarin
J. O. Kuboye
Emmanuel Oluseye Adeyefa
+ PDF Chat Approximating non linear higher order ODEs by a three point block algorithm 2021 Ahmad Fadly Nurullah Rasedee
Mohammad Hasan Abdul Sathar
Khairil Iskandar Othman
Siti Raihana Hamzah
Norizarina Ishak
+ Dynamics Of Aids Manifestation: A Mathematical Prediction 2005 A. H. Nagpal
S. Laxminarayan
Raj S. Sodhi
Ted Roche
S. Sofer
+ Local Estimation of the Global Discretization Error 1971 Hans J. Stetter
+ Application of backward differentiation methods to the finite element solution of time‐dependent problems 1979 Zahari Zlatev
Per Grove Thomsen
+ PDF Chat Solving Nonstiff Higher Order Odes Using Variable Order Step Size Backward Difference Directly 2014 Ahmad Fadly Nurullah Rasedee
Mohamed Bin Suleiman
Zarina Bibi İbrahim
+ An Overview and Recent Advances in Vector and Scalar Formalisms: Space/Time Discretizations in Computational Dynamics—A Unified Approach 2011 Kumar K. Tamma
Jason Har
Xiangmin Zhou
Masao Shimada
A. Hoitink
+ Appendix A: Computer Programs 2011 David Z. Goodson
+ PDF Chat Simultaneous Numerical Solution of Differential-Algebraic Equations 1971 C. W. Gear