The 𝐷-resultant, singularities and the degree of unfaithfulness

Type: Article

Publication Date: 1997-01-01

Citations: 22

DOI: https://doi.org/10.1090/s0002-9939-97-03639-3

Abstract

We introduce the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-resultant of two polynomials in one variable and show how it can be used to decide if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k left-parenthesis f left-parenthesis t right-parenthesis comma g left-parenthesis t right-parenthesis right-parenthesis equals k left-parenthesis t right-parenthesis comma k left-bracket f left-parenthesis t right-parenthesis comma g left-parenthesis t right-parenthesis right-bracket equals k left-bracket t right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">]</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">k(f(t),g(t))=k(t),k[f(t),g(t)]=k[t]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and to find the singularities of the curve <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x equals f left-parenthesis t right-parenthesis comma y equals g left-parenthesis t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">x=f(t),y=g(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The second criterion is used to give a very short proof of a special case of the epimorphism theorem of Abhyankar and Moh.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat 𝐹-purity and rational singularity 1983 Richard Fedder
+ PDF Chat Polynomials and the limit point condition 1975 Robert M. Kauffman
+ PDF Chat An 𝑙₁ extremal problem for polynomials 1971 E. Beller
Donald J. Newman
+ PDF Chat Lower bounds on the F-pure threshold and extremal singularities 2022 Zhibek Kadyrsizova
Jennifer Kenkel
Janet Page
Jyoti Singh
Karen E. Smith
Adela Vraciu
Emily E. Witt
+ PDF Chat Divinsky’s radical 1972 Patrick N. Stewart
+ PDF Chat Singularities of generic linkage via Frobenius powers 2023 Jiamin Li
+ PDF Chat Interpolation and Gleason parts in 𝐿-domains 1984 Michael Frederick Behrens
+ PDF Chat Polynomial approximation on 𝑦=𝑥^{𝛼} 1970 Eli Passow
Louis Raymon
+ PDF Chat A singular representation of 𝐸₆ 1994 B. Binegar
Roger Zierau
+ PDF Chat On the maximum modulus of polynomials 1992 Mohammed A. Qazi
+ Dilogarithm and higher ℒ-invariants for 𝒢ℒ₃(𝐐_{𝐩}) 2021 Zicheng Qian
+ PDF Chat Gauss’ lemma 1972 Hwa Tsang Tang
+ PDF Chat The Diophantine equation $f(x)=g(y)$ 1990 Todd Cochrane
+ PDF Chat Quasianalyticity and pluripolarity 2005 Dan Coman
Norman Levenberg
Evgeny A. Poletsky
+ PDF Chat Jet-detectable extrema 1984 Angelo Barone Netto
+ On modules 𝑀 with 𝜏(𝑀)≅𝜈Ω^{𝑑+2}(𝑀) for isolated singularities of Krull dimension 𝑑 2019 René Marczinzik
+ PDF Chat An extremal problem for polynomials 1994 Alexandre Erëmenko
László Lempert
+ PDF Chat A global Łojasiewicz inequality for algebraic varieties 1992 Shanyu Ji
Janós Kollár
Bernard Shiffman
+ When does a perturbation of the equations preserve the normal cone? 2023 Phạm Hùng Quý
Ngô Viêt Trung
+ The extraspecial case of the 𝑘(𝐺𝑉) problem 2001 David Gluck
Kay Magaard