Type: Article
Publication Date: 2013-05-16
Citations: 1
DOI: https://doi.org/10.1142/s0217984913500978
In this paper, we investigate the initiation and subsequent evolution of Crow instability in an inhomogeneous unitary Fermi gas using zero-temperature Galilei-invariant nonlinear Schrödinger equation. Considering a cigar-shaped unitary Fermi gas, we generate the vortex–antivortex pair either by phase-imprinting or by moving a Gaussian obstacle potential. We observe that the Crow instability in a unitary Fermi gas leads to the decay of the vortex–antivortex pair into multiple vortex rings and ultimately into sound waves.
Action | Title | Year | Authors |
---|