Type: Article
Publication Date: 2014-08-07
Citations: 23
DOI: https://doi.org/10.1080/00949655.2014.945449
A Bayesian approach is proposed for coefficient estimation in the Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems. Then, a stochastic search variable selection approach is proposed for Tobit quantile regression model based on g-prior. An expression for the hyperparameter g is proposed to calibrate the modified g-prior with a ridge parameter to the corresponding g-prior. Some possible extensions of the proposed approach are discussed, including the continuous and binary responses in quantile regression. The methods are illustrated using several simulation studies and a microarray study. The simulation studies and the microarray study indicate that the proposed approach performs well.