Wilson-’t Hooft operators in four-dimensional gauge theories and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi></mml:math>-duality

Type: Article

Publication Date: 2006-07-07

Citations: 321

DOI: https://doi.org/10.1103/physrevd.74.025005

Abstract

We study operators in four-dimensional gauge theories which are localized on a straight line, create electric and magnetic flux, and in the UV limit break the conformal invariance in the minimal possible way. We call them Wilson-'t Hooft operators, since in the purely electric case they reduce to the well-known Wilson loops, while in general they may carry 't Hooft magnetic flux. We show that to any such operator one can associate a maximally symmetric boundary condition for gauge fields on ${\mathrm{AdS}}_{E}^{2}\ifmmode\times\else\texttimes\fi{}{S}^{2}$. We show that Wilson-'t Hooft operators are classified by a pair of weights (electric and magnetic) for the gauge group and its magnetic dual, modulo the action of the Weyl group. If the magnetic weight does not belong to the coroot lattice of the gauge group, the corresponding operator is topologically nontrivial (carries nonvanishing 't Hooft magnetic flux). We explain how the spectrum of Wilson-'t Hooft operators transforms under the shift of the $\ensuremath{\theta}$-angle by $2\ensuremath{\pi}$. We show that, depending on the gauge group, either $SL(2,\mathbb{Z})$ or one of its congruence subgroups acts in a natural way on the set of Wilson-'t Hooft operators. This can be regarded as evidence for the $S$-duality of $N=4$ super-Yang-Mills theory. We also compute the one-point function of the stress-energy tensor in the presence of a Wilson-'t Hooft operator at weak coupling.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View
  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Nonlocal Operators and Duality in Abelian Gauge Theory on a General Four-Manifold 2013 Meng-Chwan Tan
+ Nonlocal Operators and Duality in Abelian Gauge Theory on a Four-Manifold 2013 Meng-Chwan Tan
+ PDF Chat Wilson-’t Hooft lines as transfer matrices 2021 Kazunobu Maruyoshi
Toshihiro Ota
Junya Yagi
+ PDF Chat More on ’t Hooft loops in $ \mathcal{N}=4 $ SYM 2012 Fabrizio Pucci
+ PDF Chat Quantum 't Hooft operators and $S$-duality in $N=4$ super Yang-Mills 2009 Jaume Gomis
Takuya Okuda
Diego Trancanelli
+ PDF Chat The algebra of Wilson–'t Hooft operators 2009 Anton Kapustin
Natalia Saulina
+ Quantum 't Hooft operators and S-duality in N=4 super Yang-Mills 2009 Jaume Gomis
Takuya Okuda
Diego Trancanelli
+ Quantum 't Hooft operators and S-duality in N=4 super Yang-Mills 2009 Jaume Gomis
Takuya Okuda
Diego Trancanelli
+ S-duality transformation of $\mathcal{N}$ $=4$ SYM theory at the operator level 2019 Shan Hu
+ Exact Degeneracy of Casimir Energy for $\mathcal{N}=4$ Supersymmetric Yang-Mills Theory on ADE Singularities and S-Duality 2023 Chao Ju
+ PDF Chat Wall-crossing and operator ordering for ’t Hooft operators in $$ \mathcal{N} $$ = 2 gauge theories 2019 Hirotaka Hayashi
Takuya Okuda
Yutaka Yoshida
+ PDF Chat Duality between Wilson loops and gluon amplitudes 2009 Johannes M. Henn
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">S</mml:mi></mml:math> -duality and loop operators in canonical formalism 2021 Shan Hu
+ Holomorphic reduction of N=2 gauge theories, Wilson-'t Hooft operators, and S-duality 2006 Anton Kapustin
+ Probing Wilson loops in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math>Chern–Simons-matter theories at weak coupling 2015 Luca Griguolo
Matías Leoni
Andrea Mauri
Silvia Penati
Domenico Seminara
+ PDF Chat Wilson loops in 5d $$ \mathcal{N}=1 $$ theories and S-duality 2018 Benjamin Assel
Antonio Sciarappa
+ Strong-weak coupling duality in non-abelian gauge theories 1997 Frank D. Ferrari
+ Wilson loops in $\mathcal{N}=4$ $SO(N)$ SYM and D-Branes in $AdS_5\times \mathbb{RP}^5$ 2020 Simone Giombi
Bendeguz Offertaler
+ PDF Chat 't Hooft lines of ADE-type and topological quivers 2023 Youssra Boujakhrout
El Hassan Saidi
R. Ahl Laamara
L.B. Drissi
+ PDF Chat Electromagnetic Duality for Line Defect Correlators in $\mathcal{N}=4$ Super Yang-Mills Theory 2024 Daniele Dorigoni
Zhihao Duan
Daniele R. Pavarini
Congkao Wen
Haitian Xie