Sylvester–Gallai Theorems for Complex Numbers and Quaternions

Type: Article

Publication Date: 2006-02-03

Citations: 34

DOI: https://doi.org/10.1007/s00454-005-1226-7

Locations

  • Discrete & Computational Geometry - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Elementary Incidence Theorems for Complex Numbers and Quaternions 2008 József Solymosi
Konrad J. Swanepoel
+ A Sylvester-Gallai Theorem for Quaternionic Projective Space 2004 L. M. Pretorius
Konrad J. Swanepoel
+ PDF Chat The Sylvester–Gallai theorem, colourings and algebra 2008 L. M. Pretorius
Konrad J. Swanepoel
+ PDF Chat A constructive version of the Sylvester-Gallai Theorem 2024 Mark Mandelkern
+ PDF Chat A Sylvester–Gallai Result for Concurrent Lines in the Complex Plane 2020 Alex Cohen
+ PDF Chat The Sylvester-Chvatal Theorem 2005 Xiaohong Chen
+ Complex Numbers 2010 Ron Goldman
+ Complex Numbers and Quaternions 2010
+ Complex Numbers and Quaternions 2012 Gerard O’Regan
+ Complex forms of quaternionic linear maps 1975 Dragomir Ž. Djoković
+ Quaternionic Geometry and Complex Methods 2001 Henrik Pedersen
+ PDF Chat A Sylvester–Gallai theorem for cubic curves 2022 Alex Cohen
Frank de Zeeuw
+ A Sylvester-Gallai theorem for cubic curves 2020 Alex S. Cohen
Frank de Zeeuw
+ A Sylvester-Gallai theorem for cubic curves 2020 Alex Cohen
Frank de Zeeuw
+ A Proof of Sylvester's Theorem on Collinear Points 1968 Valerie Williams
+ Art. 4: Coaxial Quaternions 1906 Alexander Macfarlane
+ A Sylvester-Gallai result for concurrent lines in the complex plane 2020 Alex S. Cohen
+ A Sylvester-Gallai result for concurrent lines in the complex plane 2020 Alex Cohen
+ Quaternions and matrices of quaternions 1997 Fuzhen Zhang
+ On the geometry of real or complex supersolvable line arrangements 2016 Benjamin Anzis
Ştefan Tohǎneanu