The smooth continuation method in optimal control with an application to quantum systems

Type: Article

Publication Date: 2010-03-23

Citations: 18

DOI: https://doi.org/10.1051/cocv/2010004

Abstract

The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system is depending upon three physical parameters, which can be used as homotopy parameters, and the time-minimizing trajectory for a prescribed couple of extremities can be analyzed by making a deformation of the Grushin metric on a two-sphere of revolution.

Locations

  • ESAIM Control Optimisation and Calculus of Variations - View - PDF
  • Springer Link (Chiba Institute of Technology) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The energy minimization problem for two-level dissipative quantum systems 2010 Bernard Bonnard
Olivier Cots
Nataliya Shcherbakova
Dominique Sugny
+ PDF Chat Differential continuation for regular optimal control problems 2011 Jean‐Baptiste Caillau
Olivier Cots
Joseph Gergaud
+ PDF Chat Optimization of dynamics of trajectory bundles using smooth and nonsmooth functionals. Part 1 2020 Dmitri Ovsyannikov
Maria A. Mizintseva
Mihail Yu. Balabanov
A. P. Durkin
Nikolai Edamenko
Е. Д. Котина
A.D. Ovsyannikov
+ PDF Chat Optimization of dynamics of trajectory bundles using smooth and nonsmooth functionals. Part 1 2020 Dmitri Ovsyannikov
Maria A. Mizintseva
Mihail Yu. Balabanov
A. P. Durkin
Nikolai Edamenko
Е. Д. Котина
A.D. Ovsyannikov
+ PDF Chat Complex Stochastic Optimal Control Foundation of Quantum Mechanics 2024 Vasil Yordanov
+ PDF Chat A TFC-based homotopy continuation algorithm with application to dynamics and control problems 2021 Yang Wang
Francesco Topputo
+ Optimization and Periodic Trajectories 1987 Frank H. Clarke
+ Revisiting Quantum Optimal Control Theory: New Insights for the Canonical Solutions 2023 Katherine C. Castro
Ignacio R. Solá
Juan J. Omiste
+ Classical Mechanics with Calculus of Variations and Optimal Control 2014 Mark Levi
+ Singular Trajectories and Their Role in Control Theory 2005 Bernard Bonnard
Monique Chyba
+ PDF Chat Cotcot: short reference manual 2005 Bernard Bonnard
Jean‐Baptiste Caillau
Emmanuel Trélat
+ Generic properties of conjugate points in optimal control problems 2024 Alberto Bressan
Marco Mazzola
Khai T. Nguyen
+ Nonautonomous dynamical systems: from theory to applications 2018 Francisco Balibrea Iniesta
+ AN IMPROVEMENT OF D-MORPH METHOD FOR FINDING QUANTUM OPTIMAL CONTROL 2016 Konstantin Zhdanov
+ Model-Free Optimization on Smooth Compact Manifolds: Overcoming Topological Obstructions using Zeroth-Order Hybrid Dynamics 2022 Daniel Escalante Ochoa
Jorge I. Poveda
+ PDF Chat Zermelo navigation problems on surfaces of revolution and geometric optimal control 2023 Bernard Bonnard
Olivier Cots
Boris Wembe
+ PROXIMITY DEGREE FOR SIMPLE AND MULTIPLE STRUCTURES OF THE EIGENVALUES: OVERSHOOT MINIMIZATION FOR FREE MOTION TRAJECTORIES OF APERIODIC SYSTEM 2017 Вейко Вадим Павлович
Vasiliy Kasatkin
Victor Matyzhonok
Petrov Andrei Anatolievich
E. A. Shakhno
+ A different look at the optimal control of the Brockett integrator 2021 Domenico D’Alessandro
Zhifei Zhu
+ Trajectory tracking control of quantum systems 2012 Shuang
Cong Cong
Jianxiu
Liu Liu
+ Newton’s Method and Complex Dynamical Systems 1988 Fritz von Haeseler
Heinz‐Otto Peitgen