Type: Article
Publication Date: 2009-01-01
Citations: 52
DOI: https://doi.org/10.1214/ejp.v14-719
LDP is proved for the inviscid shell model of turbulence. As the viscosity coefficient converges to 0 and the noise intensity is multiplied by its square root, we prove that some shell models of turbulence with a multiplicative stochastic perturbation driven by a $H$-valued Brownian motion satisfy a LDP in $\mathcal{C}([0,T],V)$ for the topology of uniform convergence on $[0,T]$, but where $V$ is endowed with a topology weaker than the natural one. The initial condition has to belong to $V$ and the proof is based on the weak convergence of a family of stochastic control equations. The rate function is described in terms of the solution to the inviscid equation.