The random walk's guide to anomalous diffusion: a fractional dynamics approach

Type: Article

Publication Date: 2000-12-01

Citations: 8086

DOI: https://doi.org/10.1016/s0370-1573(00)00070-3

Locations

  • Physics Reports - View

Similar Works

Action Title Year Authors
+ Fractional Diffusion Model, Anomalous Statistics and Random Process 2022 Wen Chen
HongGuang Sun
Xicheng Li
+ From phenomenological modelling of anomalous diffusion through continuous-time random walks and fractional calculus to correlation analysis of complex systems 2009 Daniel Fulger
+ Confined Anomalous Dynamics: A Fractional Diffusion Approach 1998 Ralf Metzler
J. Klafter
+ A random walk simulation of fractional diffusion 2004 John W. Hanneken
B. N. Narahari Achar
David M. Vaught
Kristine L. Harrington
+ Fractional model equation for anomalous diffusion 1994 Ralf Metzler
Walter Glöckle
Theo F. Nonnenmacher
+ Fractional diffusion equation for fractal-time-continuous-time random walks 1995 Pablo A. Alemany
+ Anomalous diffusion: A dynamic perspective 1990 R. Muralidhar
Doraiswami Ramkrishna
Hisao Nakanishi
Donald J. Jacobs
+ Fractional diffusion models of anomalous diffusion 2003 D. del-Castillo-Negrete
B. A. Carreras
V. E. Lynch
+ Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion 2019 E. K. Lenzi
Marcelo Kaminski Lenzi
Rafael S. Zola
+ PDF Chat Editorial for Special Issue “Fractional Dynamics: Theory and Applications” 2022 Trifce Sandev
+ PDF Chat Fractional diffusion: probability distributions and random walk models 2002 Rudolf Gorenflo
Francesco Mainardi
Daniele Moretti
Gianni Pagnini
Paolo Paradisi
+ Anomalous Diffusive Behavior in Fractional Dynamics 2003 Kyungsik Kim
Jum Soo Choi
Yong Sae Kong
+ Continuous-Time Random Walks and Fractional Diffusion Models 2016
+ Continuous-Time Random Walks and Fractional Diffusion Models 2012
+ A Fractional Model for Anomalous Diffusion with Increased Variability. 2021 Christian Glusa
+ A Fractional Model for Anomalous Diffusion with Increased Variability 2023 Christian Glusa
+ LĂ©vy walk approach to anomalous diffusion 1990 J. Klafter
A. Blumen
G. Zumofen
Michael F. Shlesinger
+ Anomalous relaxation in a fractal-time random walk model 1995 S. Gomi
Fumiko Yonezawa
+ Anomalous diffusion on a fractal: A first passage time problem 1986 Josef Honerkamp
A. BaumgÀrtner
+ Fractional differential models for anomalous diffusion 2010 HongGuang Sun
Wen Chen
Changpin Li
YangQuan Chen

Works That Cite This (6152)

Action Title Year Authors
+ PDF Chat DISPERSION EQUATION OF ATMOSPHERIC POLLUTANTS WITH FRACTIONAL PARAMETER IN THE DIFFUSIVE TERM USING CONFORMABLE DERIVATIVE AN ANALYTICAL SOLUTION 2021 André Luiz Santos da Soledade
Paulo Henrique Farias Xavier
JOSÉ ROBERTO DANTAS DA SILVA
Anderson da Silva Palmeira
Davidson Martins Moreira
+ Existence and asymptotic stability of mild solution to fractional Keller‐Segel‐Navier‐Stokes system 2024 Ziwen Jiang
Lizhen Wang
+ Existence and asymptotic behavior for ground state sign-changing solutions of fractional Schrödinger-Poisson system with steep potential well 2024 Xiao Huang
Jia Feng Liao
+ From micro-correlations to macro-correlations 2016 Iddo Eliazar
+ Using fractional calculus for generation of alpha-stable LĂ©vy probability density functions 2005 Mariusz Ciesielski
Jacek LeszczyƄski
+ The free path in a high velocity random flight process associated to a Lorentz gas in an external field 2015 Alexandru Hening
Douglas Rizzolo
Eric S. Wayman
+ Modelling transport through biological environments that contain obstacles 2017 Adam Ellery
+ TransiçÔes de fase em modelos populacionais com desordem espacial e temporal 2019 Alexander H. O. Wada
+ PDF Chat Entropy solutions to the fully nonlocal diffusion equations 2024 Ying Li
Chao Zhang
+ Controllability of non-instantaneous impulsive large-scale neutral fractional stochastic systems with Poisson jumps 2024 T. Sathiyaraj
P. Balasubramaniam
Kurunathan Ratnavelu