Homoclinic classes for generic C^1 vector fields

Type: Article

Publication Date: 2003-04-01

Citations: 50

DOI: https://doi.org/10.1017/s0143385702001116

Abstract

We prove that homoclinic classes for a residual set of C^1 vector fields X on closed n-manifolds are maximal transitive, and depend continuously on periodic orbit data. In addition, X does not exhibit cycles formed by homoclinic classes. We also prove that a homoclinic class of X is isolated if and only if it is \Omega-isolated, and it is the intersection of its stable set with its unstable set. All these properties are well known for structurally stable Axiom A vector fields.

Locations

  • Ergodic Theory and Dynamical Systems - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Homoclinic classes for generic C^1 vector fields 2001 C. M. Carballo
C. A. Morales
Maria José Pacífico
+ Homoclinic classes and finitude of attractors for vector fields on n-manifolds 2001 C. M. Carballo
C. A. Morales
+ PDF Chat HOMOCLINIC CLASSES AND FINITUDE OF ATTRACTORS FOR VECTOR FIELDS ON $n$ -MANIFOLDS 2003 C. M. Carballo
C. A. Morales
+ PDF Chat Periodic points and homoclinic classes 2006 Flavio Abdenur
Ch. Bonatti
Sylvain Crovisier
Lorenzo J. DĂ­az
Longping Wen
+ Lyapunov stability and sectional-hyperbolicity for higher-dimensional flows 2012 Alexander Arbieto
C. A. Morales
B. Santiago
+ PDF Chat HYPERBOLICITY OF HOMOCLINIC CLASSES OF VECTOR FIELDS 2014 Keonhee Lee
Manseob Lee
Seunghee Lee
+ Historic behavior in non-hyperbolic homoclinic classes. 2019 Pablo G. Barrientos
Shin Kiriki
Yushi Nakano
Artem Raibekas
Teruhiko Soma
+ Hyperbolicity of $C^1$-stably expansive homoclinic classes 2010 Keonhee Lee
Manseob Lee
+ Structurally stable heteroclinic cycles 1988 John Guckenheimer
Philip Holmes
+ Classes homoclínicas 2019 Luis Anthony Miñope Gaona
+ Robust homoclinic cycles in <sup>4</sup> 2002 Nicola Sottocornola
+ On the existence of non-trivial homoclinic classes 2007 Christian Bonatti
Shaobo Gan
Lan Wen
+ PDF Chat On the index problem of $C^1$-generic wild homoclinic classes in dimension three 2011 Katsutoshi Shinohara
+ PDF Chat Measure-Expansive Homoclinic Classes for C1 Generic Flows 2020 Manseob Lee
+ PDF Chat Generic properties of vector fields identical on a compact set and codimension one partially hyperbolic dynamics 2024 Shaobo Gan
Ruibin Xi
Jiagang Yang
Rusong Zheng
+ PDF Chat Hyperbolic sets exhibiting $C^1$-persistent homoclinic tangency for higher dimensions 2007 Masayuki Asaoka
+ PDF Chat Generation of homoclinic tangencies by $C^1$-perturbations 2009 Nikolaz Gourmelon
+ Historic behavior in nonhyperbolic homoclinic classes 2019 Pablo G. Barrientos
Shin Kiriki
Yushi Nakano
Artem Raibekas
Teruhiko Soma
+ Robustly measure expansiveness for <i>C</i><sup>1</sup> vector fields 2019 Manseob Lee
+ Robust cycles unfolding from conservative bifocal homoclinic orbits 2016 Pablo G. Barrientos
Santiago Gonzålez-Varas Ibåñez
J. Ángel Rodríguez