Type: Article
Publication Date: 2001-01-01
Citations: 533
DOI: https://doi.org/10.1214/ejp.v6-96
Suppose that $G_j$ is a sequence of finite connected planar graphs, and in each $G_j$ a special vertex, called the root, is chosen randomly-uniformly. We introduce the notion of a distributional limit $G$ of such graphs. Assume that the vertex degrees of the vertices in $G_j$ are bounded, and the bound does not depend on $j$. Then after passing to a subsequence, the limit exists, and is a random rooted graph $G$. We prove that with probability one $G$ is recurrent. The proof involves the Circle Packing Theorem. The motivation for this work comes from the theory of random spherical triangulations.