Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
ARITHMETIC ELLIPTIC CURVES IN GENERAL POSITION
Shinichi Mochizuki
Type:
Article
Publication Date:
2010-01-01
Citations:
11
View Publication
Share
Locations
Mathematical Journal of Okayama University -
View
Similar Works
Action
Title
Year
Authors
+
Height of rational points on congruent number elliptic curves
2018
Pierre Le Boudec
+
Height of rational points on congruent number elliptic curves.
2018
Pierre Le Boudec
+
Arithmetic and Geometry
2019
+
Arithmetic and Geometry
2019
+
Bounding the Elliptic Mahler Measure II
1998
Graham Everest
Chris Pinner
+
Congruent numbers, elliptic curves, and the passage from the local to the global
2007
Chandan Singh Dalawat
+
Congruent numbers, elliptic curves, and the passage from the local to the global
2007
Chandan Singh Dalawat
+
PDF
Chat
Quadratic Chabauty and Rational Points II: Generalised Height Functions on Selmer Varieties
2019
Jennifer S. Balakrishnan
Netan Dogra
+
Most hyperelliptic curves over Q have no rational points
2013
Manjul Bhargava
+
Arithmetic on curves
2003
Chandan Singh Dalawat
+
Bounding the degree of Belyi polynomials
2013
Jose Israel Rodriguez
+
Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties
2017
Jennifer S. Balakrishnan
Netan Dogra
+
Arithmetic Algebraic Geometry
1991
Gerard van der Geer
Frans J. Oort
J. H. M. Steenbrink
+
p-adic adelic metrics and Quadratic Chabauty I
2021
Amnon Besser
J. Steffen Müller
Padmavathi Srinivasan
+
Heegner points and the arithmetic of elliptic curves over ring class extensions
2012
Robert Bradshaw
William Stein
+
Arithmetic geometry : Clay Mathematics Institute Summer School, Arithmetic Geometry, July 17-August 11, 2006, Mathematisches Institut, Georg-August-Universität, Göttingen, Germany
2009
Henri Darmon
+
PDF
Chat
Arithmetic Algebraic Geometry
2008
Brian Conrad
Karl Rubin
+
Heights of points on elliptic curves over $\mathbb Q$
2020
Michael Griffin
Ken Ono
Wei‐Lun Tsai
+
Heights of points on elliptic curves over $\mathbb Q$
2020
Michael J. Griffin
Ken Ono
Wei‐Lun Tsai
+
Topics in the theory of p-adic heights on elliptic curves
2019
Francesca Bianchi
Works That Cite This (11)
Action
Title
Year
Authors
+
PDF
Chat
Two restricted ABC conjectures
2020
Machiel van Frankenhuijsen
+
Yang-Mills Theory and the ABC Conjecture
2016
Yang‐Hui He
Zhi Hu
Malte Probst
James Read
+
Explicit Estimates in Inter-universal Teichmüller Theory
2020
Shinichi Mochizuki
Ivan Fesenko
Yuichiro Hoshi
Arata Minamide
Wojciech Porowski
+
PDF
Chat
Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta-functions, notes on the work of Shinichi Mochizuki
2015
Ivan Fesenko
+
On Mochizuki's idea of Anabelomorphy and its applications
2020
Kirti Joshi
+
A height inequality for rational points on elliptic curves implied by the abc-conjecture
2012
Ulf Kühn
J. Steffen Müller
+
PDF
Chat
Yang–Mills theory and the ABC conjecture
2018
Yang‐Hui He
Zhi Hu
Malte Probst
James Read
+
Distribution of Non-Wieferich primes in certain algebraic groups under ABC
2020
Subham Bhakta
+
Two Restricted ABC Conjectures.
2020
Machiel van Frankenhuijsen
+
Effectivity in Mochizuki's work on the $abc$-conjecture
2016
Vesselin Dimitrov
Works Cited by This (11)
Action
Title
Year
Authors
+
Noncritical Belyi Maps
2004
Shinichi Mochizuki
+
Riemann's Zeta Function
1974
Harold M. Edwards
+
PDF
Chat
Galois Sections in Absolute Anabelian Geometry
2005
Shinichi Mochizuki
+
PDF
Chat
Absolute anabelian cuspidalizations of proper hyperbolic curves
2007
Shinichi Mochizuki
+
Heights and Elliptic Curves
1986
Joseph H. Silverman
+
Endlichkeitss�tze f�r abelsche Variet�ten �ber Zahlk�rpern
1983
Герд Фалтингс
+
Abelian l-Adic Representations and Elliptic Curves
1997
Jean-Pierre Serre
+
Bornes pour la torsion des courbes elliptiques sur les corps de nombres
1996
Lo x EF c Merel
+
The ABC Conjecture Implies Vojta's Height Inequality for Curves
2002
Machiel van Frankenhuysen
+
None
1991
Noam D. Elkies