On the inversion of the Radon transform: standard versus<i>M</i><sup>2</sup>approach

Type: Article

Publication Date: 2009-12-01

Citations: 8

DOI: https://doi.org/10.1080/09500340903447825

Abstract

We compare the Radon transform in its standard and symplectic formulations and argue that the inversion of the latter can be performed more efficiently.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Modern Optics - View

Similar Works

Action Title Year Authors
+ On the Radon inversion formula 1979 E. Montaldi
+ PDF Chat The Lorentz Integral Transform and its Inversion 2010 Nir Barnea
V.D. Efros
Winfried Leidemann
G. Orlandini
+ <i>The Fourier Integral and Its Applications</i> 1963 A. Papoulis
A. A. Maradudin
+ Inversion of the reduced Poisson-Hankel transform 1972 Deborah Tepper Haimo
Frank M. Cholewinski
+ The Radon transform on Z<sub>2</sub><sup><i>k</i></sup> 1985 Persi Diaconis
Ronald Graham
+ Inversion of the Lorentz integral transform with wavelets 2005 D. Andreasi
+ Evaluation of inverse Fourier transforms through romberg integration 2009 M. D. Sharma
+ Inversion of the classical Radon transform on $\mathbb{Z}^n_p$ 2018 Cho Yung Duk
Jong Yoon Hyun
문성환
+ The Roelcke-Selberg decomposition and the Radon transform 2000 AndrĂŠ Unterberger
+ Radon transformation and Fourier integral&amp;nbsp;operators 2024
+ Inversion Formulas for the Radon Transform 2004 Sine R. Jensen
+ On the Fourier Inversion Theorem for R 1 1968 Ian Richards
+ Inversion methods for Fourier transform 1991 L De Michele
M. Di Natale
D. Roux
+ Fourier Methods and Integral Transforms 2017 Abul Hasan Siddiqi
Mohamed Al-Lawati
Messaoud Boulbrachene
+ Fourier Inversion 1995 Robert M. Gray
Joseph W. Goodman
+ An inversion formula of radon transform on the product Heisenberg group 2012 Jianxun He
Wen Li-qun
+ The Fourier Transform in <i>L</i><sup><i>p</i></sup>-Spaces 2018
+ On the inversion of integral transforms 1959 Marijan Ribarič
+ Fourier transform and <i>k</i>-space 2001 Jeremy F. Magland
+ Fourier Integral and Transforms 2008 Ravi P. Agarwal
Donal O’Regan