A positive density of fundamental discriminants with large regulator

Type: Article

Publication Date: 2013-03-27

Citations: 9

DOI: https://doi.org/10.2140/pjm.2013.262.81

Abstract

We prove that there is a positive density of positive fundamental discriminants D such that the fundamental unit ε( D) of the ring of integers of the field ‫(ޑ‬ √ D) is essentially greater than D 3 .

Locations

  • Pacific Journal of Mathematics - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ On the size of the fundamental unit of real quadratic fields 2020 Francesco Stocco
+ PDF Chat None 1999 Ken Ono
+ An inequality relating the regulator and the discriminant of a number field 1984 Joseph H. Silverman
+ Fundamental units of cubic fields of positive discriminant 1981 �. T. Avanesov
K. K. Billevich
+ Fundamental Units of Certain Cubic Number Fields with negative Discriminants 1978 Akira Endô
+ 7 Ideal numbers of positive discriminant 2025
+ Small generators of abelian number fields 2023 Martin Widmer
+ A Quadratic Analogue of Artin's Conjecture on Primitive Roots 2000 Hans Roskam
+ Filling the gap in the table of smallest regulators up to degree 7 2018 Eduardo Friedman
Gabriel Ramírez-Raposo
+ PDF Chat None 2001 Dongho Byeon
+ PDF Chat A NOTE ON UNITS OF REAL QUADRATIC FIELDS 2012 Dongho Byeon
Sangyoon Lee
+ Minkowski's bound for the prime ideals in a given ideal class 2018 Naser T. Sardari
+ Number of Divisors 2024
+ PDF Chat The least inert prime in a real quadratic field 2012 Enrique Treviño
+ Bounds of discriminants of number fields 2013 Pei-Chu Hu
+ On the Density of Discriminants of Cubic Fields 1969 H. Davenport
H. Heilbronn
+ Prime discriminants in real quadratic fields of narrow class number one 1979 Judith S. Sunley
+ PDF Chat Number fields without small generators 2015 Jeffrey D. Vaaler
Martin Widmer
+ 6 Ideal numbers of negative discriminant 2025
+ PDF Chat Lower bounds for discriminants of number fields 1976 Andrew Odlyzko