Subelliptic Poincaré inequalities: The case $p < 1$

Type: Article

Publication Date: 1995-07-01

Citations: 21

DOI: https://doi.org/10.5565/publmat_39295_08

Abstract

We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function.Such inequalities hold on Boman domains associated with the underlying Carnot-Carathéodory metric.In particular, they remain true for solutions to certain classes of subelliptic equations.Our results complement the earlier results in these directions for p ≥ 1.

Locations

  • Publicacions Matemàtiques - View
  • Dipòsit Digital de Documents de la UAB (Universitat Autònoma de Barcelona) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Weighted $p(\cdot)$-Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications 2024 Lucas Alejandro Vallejos
Raúl E. Vidal
+ Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces 2004 Giuseppe Di Fazio
Pietro Zamboni
+ PDF Chat Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields 2000 Daniele Morbidelli
+ Regularity estimates for convex functions in Carnot-Carathéodory spaces 2012 Valentino Magnani
Matteo Scienza
+ Sub-elliptic global high order Poincaré inequalities in stratified Lie groups and applications 2007 William S. Cohn
Guozhen Lu
Peiyong Wang
+ PDF Chat Regularity estimates for convex functions in Carnot–Carathéodory spaces 2016 Valentino Magnani
Matteo Scienza
+ Wolff-potential estimates and doubling of subelliptic -harmonic measures 2013 Benny Avelin
Kaj Nyström
+ On the lifting and approximation theorem for nonsmooth vector fields 2010 Marco Bramanti
Luca Brandolini
Monica Pedroni
+ On the lifting and approximation theorem for nonsmooth vector fields 2010 Marco Bramanti
Luca Brandolini
Marco Pedroni
+ PDF Chat On the lifting and approximation theorem for nonsmooth vector fields 2010 Marco Bramanti
Luca Brandolini
Marco Pedroni
+ PDF Chat A proof of Hörmander’s theorem for sublaplacians on Carnot groups 2015 Marco Bramanti
Luca Brandolini
+ Weighted $p(\cdot)$-Poincaré and Sobolev inequality]{Weighted $% p(\cdot )$-Poincaré and Sobolev inequalities for vector fields satisfiying Hörmander's condition and applications 2022 L. A. Vallejos
R. E. Vidal
+ Subelliptic Estimates and Hörmander's Theorem 2001 Daniel W. Stroock
+ PDF Chat Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications 1992 Guozhen Lu
+ Weighted Inequalities of Poincaré Type on Chain Domains 2017 Seng-Kee Chua
+ Weighted multilinear Poincare inequalities for vector fields of Hormander type 2009 Diego Maldonado
Kabe Moen
Virginia Naibo
+ Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition in variable exponent Sobolev spaces 2015 Xia Li
Guo Zhen Lu
Han Li Tang
+ Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces 2008 Donatella Danielli
Nicola Garofalo
Nguyen Cong Phuc
+ PDF Chat Balls defined by nonsmooth vector fields and the Poincaré inequality 2004 Annamaria Montanari
Daniele Morbidelli
+ A note on a poincaré type inequality for solutions to subelliptic equations 1996 Guozhen Lu