Type: Article
Publication Date: 2003-12-31
Citations: 315
DOI: https://doi.org/10.1007/s00014-003-0775-8
The Bakry-Émery tensor gives an analog of the Ricci tensor for a Riemannian manifold with a smooth measure. We show that some of the topological consequences of having a positive or nonnegative Ricci tensor are also valid for the Bakry-Émery tensor. We show that the Bakry-Émery tensor is nondecreasing under a Riemannian submersion whose fiber transport preserves measures up to constants. We give some relations between the Bakry-Émery tensor and measured Gromov-Hausdorff limits.