Stability properties of a formulation of Einstein’s equations

Type: Article

Publication Date: 2002-09-19

Citations: 21

DOI: https://doi.org/10.1103/physrevd.66.064011

Abstract

We study the stability properties of the Kidder-Scheel-Teukolsky (KST) many-parameter formulation of Einstein's equations for weak gravitational waves on flat space-time from a continuum and numerical point of view. At the continuum, performing a linearized analysis of the equations around flat spacetime, it turns out that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of instabilities that appear as one changes parameter values in the formulation. Lessons learnt in this analysis can be applied in other formulations with similar properties.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D. Particles and fields - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Illustrating stability properties of numerical relativity in electrodynamics 2002 Andrew Knapp
E. J. Walker
Thomas W. Baumgarte
+ PDF Chat Linearization stability of the Einstein equations 1973 Arthur E. Fischer
Jerrold E. Marsden
+ PDF Chat The Einstein–Boltzmann equations revisited 2017 Sharvari Nadkarni-Ghosh
Alexandre Réfrégier
+ PDF Chat Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations 2003 R. O’Shaughnessy
+ PDF Chat A Dissipative Algorithm for Wave-like Equations in the Characteristic Formulation 1999 Luis Lehner
+ HYPERBOLIC REDUCTIONS OF THE FIELD DQUATIONS 2008 Miguel Alcubierre
+ Instability of gravitational and electromagnetic perturbations of extremal Reissner-Nordström spacetime 2022 Marios Antonios Apetroaie
+ Instability of the Bartnik-McKinnon solution of the Einstein-Yang-Mills equations 1990 Norbert Straumann
Zhi‐Hong Zhou
+ Well-Posedness and Linearization Stability of the Einstein-Dirac Theory 1983 J. Isemberg
David Bao
Philip B. Yasskin
+ PDF Chat Stability for the gravitational Vlasov-Poisson system in dimension two 2006 Jean Dolbeault
Javier Gonzalez Fernandez
Óscar Sánchez
+ Stability and Instability of Schwarzschild-AdS for the Nonlinear Einstein-Klein-Gordon System 2022 Fengxia Liu
Boling Guo
+ PDF Chat Numerical modeling of black holes as sources of gravitational waves in a nutshell 2007 S. Husa
+ PDF Chat A spectral method algorithm for numerical simulations of gravitational fields 2021 Claudio Meringolo
S. Servidio
P. Veltri
+ On the Numerical Stability of the Einstein Equations 2000 Mark Miller
+ FCF formulation of Einstein equations: local uniqueness and numerical accuracy and stability 2021 Isabel Cordero Carrión
Samuel Santos Pérez
P. Cerdá‐Durán
+ A 1D Solver for the Einstein Field Equations 1999 José A. Font
J. Massó
+ Steps towards the Well-posedness of the Characteristic Evolution for the Einstein Equations 2013 Maria Babiuc
+ Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds 2008 Olivier Druet
Emmanuel Hebey
+ Superradiant instabilities for short-range non-negative potentials on Kerr spacetimes and applications 2017 Georgios Moschidis
+ PDF Chat Mathematical study of gravitational kinetic equations by considering relativistic effects : stability, self-similar solutions. 2012 Cyril Rigault

Works That Cite This (20)

Action Title Year Authors
+ PDF Chat Canonical reduction for dilatonic gravity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>dimensions 2016 T Scott
Xiangdong Zhang
Robert B. Mann
G. J. Fee
+ PDF Chat Towards standard testbeds for numerical relativity 2003 Miguel Alcubierre
Gabrielle Allen
C. Bona
David R. Fiske
Tom Goodale
F. S. Guzmán
Ian Hawke
Scott H. Hawley
S. Husa
Michael Koppitz
+ PDF Chat Numerical stability for finite difference approximations of Einstein’s equations 2006 Gioel Calabrese
Ian Hinder
S. Husa
+ PDF Chat Numerical relativity and compact binaries 2003 Thomas W. Baumgarte
+ PDF Chat Numerical Treatment of Interfaces for Second-Order Wave Equations 2014 Florencia Parisi
M. Cécere
Mirta S. Iriondo
Oscar Reula
+ PDF Chat Note on the strong hyperbolicity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> gravity with dynamical shifts 2022 Li-Ming Cao
Liang-Bi Wu
+ PDF Chat The Hamiltonian formulation of general relativity: myths and reality 2010 N. Kiriushcheva
Sergei Kuzmin
+ PDF Chat Black-hole binaries, gravitational waves, and numerical relativity 2010 Joan Centrella
John G. Baker
Bernard Kelly
James R. van Meter
+ PDF Chat Numerical relativity of compact binaries in the 21st century 2018 Matthew Duez
Yosef Zlochower
+ PDF Chat No naked singularities in homogeneous, spherically symmetric bubble spacetimes? 2004 Olivier Sarbach
Luis Lehner