On a nonresonance condition between the first and the second eigenvalues for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$p$"><mml:mi>p</mml:mi></mml:math>-Laplacian

Type: Article

Publication Date: 2001-01-01

Citations: 8

DOI: https://doi.org/10.1155/s0161171201004628

Abstract

We are concerned with the existence of solution for the Dirichlet problem − Δ p u = f ( x , u ) + h ( x ) in Ω , u = 0 on ∂ Ω , when f ( x , u ) lies in some sense between the first and the second eigenvalues of the p ‐Laplacian Δ p . Extensions to more general operators which are ( p − 1)‐homogeneous at infinity are also considered.

Locations

  • International Journal of Mathematics and Mathematical Sciences - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ PDF Chat On a problem of lower limit in the study of nonresonance 1997 Aomar Anane
Omar Chakrone
+ PDF Chat Existence of solutions for a p-Laplacian system with a nonresonance condition between the first and the second eigenvalues 2022 Sara Dob
Hakim Lekhal
Messaoud Maouni
+ On the existence and stability of solutions for Dirichlet problem with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian 2006 Marek Galewski
+ PDF Chat Generalized eigenvalue problems of nonhomogeneous elliptic operators and their application 2013 Dumitru Motreanu
Mieko Tanaka
+ On the first curve of Fučik Spectrum Of $p$-fractional Laplacian Operator with nonlocal normal boundary conditions 2017 Divya Goel
Sarika Goyal
K. Sreenadh
+ PDF Chat Multiple solutions for the $p$-Laplacian under global nonresonance 1991 Manuel del Pino
Raúl Manásevich
+ Nonuniform nonresonance at the first eigenvalue of the p-laplacian 1997 Meirong Zhang
+ PDF Chat Positive Solutions of a Kind of Equations Related to the Laplacian and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>-Laplacian 2014 Fangfang Zhang
Zhanping Liang
+ The $$p-$$Laplacian 2018 D. E. Edmunds
W. D. Evans
+ PDF Chat Perturbations near resonance for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$p$" id="E1"><mml:mi>p</mml:mi></mml:math>-Laplacian in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\mathbb{R}^N$" id="E2"><mml:mrow><mml:msup><mml:mi>ℝ</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:math> 2002 To Fu
Maurício Luciano Pelicer
+ PDF Chat Nonresonance conditions on the potential for a semilinear Dirichlet problem 2008 Aboubacar Marcos
+ PDF Chat Eigenvalues for a Neumann Boundary Problem Involving the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian 2015 Qing Miao
+ A non resonance under and between the two first eigenvalues in a nonlinear boundary problem 2010 Aomar Anane
Omar Chakrone
Najat Moradi
+ Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with 𝑝-Laplacian 2007 Dumitru Motreanu
V. V. Motreanu
Nikolas S. Papageorgiou
+ PDF Chat Stability of Non-Linear Dirichlet Problems with ϕ-Laplacian 2021 Michał Bełdziński
Marek Galewski
Igor Kossowski
+ PDF Chat Neumann fractional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e20" altimg="si5.svg"><mml:mi>p</mml:mi></mml:math>-Laplacian: Eigenvalues and existence results 2019 Dimitri Mugnai
Edoardo Proietti Lippi
+ Generalized eigenvalue problems for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian with indefinite weight 2014 Mieko Tanaka
+ PDF Chat A priori estimates for some elliptic equations involving the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi>p</mml:mi></mml:math>-Laplacian 2017 Lucio Damascelli
Rosa Pardo
+ PDF Chat Some Existence Results of Positive Solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>φ</mml:mi></mml:mrow></mml:math>-Laplacian Systems 2014 Xianghui Xu
Yong-Hoon Lee
+ Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions 2009 Francisco Odair de Paiva
Humberto Ramos Quoirin