From dispersion relations to spectral dimension—and back again

Type: Article

Publication Date: 2011-11-08

Citations: 61

DOI: https://doi.org/10.1103/physrevd.84.104018

Abstract

The so-called spectral dimension is a scale-dependent number associated with both geometries and field theories that has recently attracted much attention, driven largely, though not exclusively, by investigations of causal dynamical triangulations and Ho\ifmmode \check{r}\else \v{r}\fi{}ava gravity as possible candidates for quantum gravity. We advocate the use of the spectral dimension as a probe for the kinematics of these (and other) systems in the region where spacetime curvature is small, and the manifold is flat to a good approximation. In particular, we show how to assign a spectral dimension (as a function of so-called diffusion time) to any arbitrarily specified dispersion relation. We also analyze the fundamental properties of spectral dimension using extensions of the usual Seeley--DeWitt and Feynman expansions and by using saddle point techniques. The spectral dimension turns out to be a useful, robust, and powerful probe, not only of geometry, but also of kinematics.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Spectral geometry as a probe of quantum spacetime 2009 Dario Benedetti
Joe Henson
+ PDF Chat Spectral Dimension as a Probe of the Ultraviolet Continuum Regime of Causal Dynamical Triangulations 2011 Thomas P. Sotiriou
Matt Visser
Silke Weinfurtner
+ PDF Chat Causal Dynamical Triangulations: Gateway to Nonperturbative Quantum Gravity 2024 J. Ambjørn
R. Loll
+ Zooming in on the Universe: In Search of Quantum Spacetime 2023 Joren Brunekreef
+ PDF Chat Spectrum of the Laplace-Beltrami operator and the phase structure of causal dynamical triangulations 2018 Giuseppe Clemente
Massimo D’Elia
+ PDF Chat Scaling analyses of the spectral dimension in 3-dimensional causal dynamical triangulations 2018 Joshua H. Cooperman
+ PDF Chat Spectral dimension on spatial hypersurfaces in causal set quantum gravity 2019 Astrid Eichhorn
Sumati Surya
Fleur Versteegen
+ Generalised spectral dimensions in non-perturbative quantum gravity 2022 Marcus Reitz
Dániel Németh
Damodar Rajbhandari
A. Görlich
J. Gizbert-Studnicki
+ PDF Chat Generalised spectral dimensions in non-perturbative quantum gravity 2023 Marcus Reitz
D. Németh
Damodar Rajbhandari
A. Görlich
J. Gizbert-Studnicki
+ Spectral Methods in Causal Dynamical Triangulations 2019 Giuseppe Clemente
Massimo D’Elia
Alessandro Ferraro
+ Spectral Methods in Causal Dynamical Triangulations 2019 Giuseppe Clemente
Massimo D’Elia
Alessandro Ferraro
+ PDF Chat Spectral Methods in Causal Dynamical Triangulations 2020 Giuseppe Clemente
Massimo D’Elia
Alessandro Ferraro
+ Causal Dynamical Triangulations: Gateway to Nonperturbative Quantum Gravity 2024 J. Ambjørn
R. Loll
+ Causal Dynamical Triangulations and the Quest for Quantum Gravity 2010 J. Ambjørn
J. Jurkiewicz
R. Loll
+ PDF Chat Causal dynamical triangulations and the quest for quantum gravity 2012 J. Ambjørn
J. Jurkiewicz
R. Loll
+ PDF Chat Exploring torus universes in causal dynamical triangulations 2013 Timothy Budd
R. Loll
+ PDF Chat Setting the physical scale of dimensional reduction in causal dynamical triangulations 2019 Joshua H. Cooperman
Manuchehr Dorghabekov
+ PDF Chat Quantum gravity without vacuum dispersion 2017 Daniel Coumbe
+ PDF Chat Quantum Gravity via Causal Dynamical Triangulations 2014 J. Ambjørn
A. Görlich
J. Jurkiewicz
R. Loll
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>-dimensional quantum gravity as the continuum limit of causal dynamical triangulations 2007 Dario Benedetti
R. Loll
Francesco Zamponi