Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part I

Type: Article

Publication Date: 2009-08-04

Citations: 47

DOI: https://doi.org/10.1090/s0002-9947-09-04690-x

Abstract

Let Ω ⊂ R N be a compact imbedded Riemannian manifold of dimension d ≥ 1 and define the (d + 1)-dimensional Riemannian manifold M := {(x, r(x)ω) : x ∈ R, ω ∈ Ω} with r > 0 and smooth, and the natural metricWe require that M has conical ends: r(x) = |x| + O(x -1 ) as x → ±∞.The Hamiltonian flow on such manifolds always exhibits trapping.Dispersive estimates for the Schrödinger evolution e it∆ M and the wave evolution e it √ -∆ M are obtained for data of the form f (x, ω) = Y n (ω)u(x), where Y n are eigenfunctions of ∆ Ω .This paper treats the case d = 1, Y 0 = 1.In Part II of this paper we provide details for all cases d + n > 1.Our method combines two main ingredients:(A) A detailed scattering analysis of Schrödinger operators of the form -∂ 2 ξ + V (ξ) on the line where V (ξ) has inverse square behavior at infinity.(B) Estimation of oscillatory integrals by (non)stationary phase.

Locations

  • arXiv (Cornell University) - PDF
  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II 2009 Wilhelm Schlag
Avy Soffer
Wolfgang Staubach
+ MANIFOLDS WITH CONICAL ENDS, PART II 2008 Wilhelm Schlag
Avy Soffer
Wolfgang Staubach
+ Decay for the wave and Schroedinger evolutions on manifolds with conical ends, Part II 2008 Wilhelm Schlag
Avy Soffer
Wolfgang Staubach
+ Decay for the wave and Schroedinger evolutions on manifolds with conical ends, Part I 2008 Wilhelm Schlag
Avy Soffer
Wolfgang Staubach
+ Dispersive equations on asymptotically conical manifolds: time decay in the low-frequency regime 2023 Viviana Grasselli
+ PDF Chat Pointwise dispersive estimates for Schrodinger and wave equations in a conical singular space 2024 Qiuye Jia
Junyong Zhang
+ PDF Chat Asymptotic expansion in time of the Schrödinger group on conical manifolds 2006 Xue Ping Wang
+ Long-time decay estimates for the Schr\"odinger equation on manifolds 2004 Igor Rodnianski
Terence Tao
+ PDF Chat Dispersive equations on asymptotically conical manifolds: time decay in the low frequency regime 2021 Viviana Grasselli
+ Singularities of solutions to Schrodinger equation on scattering manifold 2007 Kenichi Ito
Shu Nakamura
+ Long-time decay estimates for the Schrödinger equation on manifolds 2004 Igor Rodnianski
Terence Tao
+ Singularities of solutions to the Schrödinger equation on scattering manifold 2009 Kenichi Ito
Shu Nakamura
+ PDF Chat The Schrödinger propagator for scattering metrics 2005 Andrew Hassell
Jared Wunsch
+ Chapter 11. Longtime Decay Estimates for the Schrödinger Equation on Manifolds 2009 Igor Rodnianski
T. Tao
+ Propagation of singularities and growth for Schrödinger operators 1999 Jared Wunsch
+ PDF Chat Wave decay on convex co-compact hyperbolic manifolds 2009 Colin Guillarmou
Frédéric Naud
+ PDF Chat Degenerated codimension 1 crossings and resolvent estimates 2009 Thomas Duyckaerts
Clotilde Fermanian Kammerer
Thierry Jecko
+ PDF Chat Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II 2009 Colin Guillarmou
Andrew Hassell
+ Resolvent at low energy and Riesz transform for Schroedinger operators on asymptotically conic manifolds. II 2007 Colin Guillarmou
Andrew Hassell
+ Propagation of singularities under Schrödinger equations on manifolds with ends 2022 Shota Fukushima

Works That Cite This (45)

Action Title Year Authors
+ Strichartz estimates for the one-dimensional wave equation 2020 Roland Donninger
Irfan Glogić
+ A Vector Field Method on the Distorted Fourier Side and Decay for Wave Equations With Potentials 2016 Roland Donninger
Joachim Krieger
+ Stability of stationary equivariant wave maps from the hyperbolic plane 2014 Andrew Lawrie
Sung‐Jin Oh
Sohrab Shahshahani
+ PDF Chat A Local Energy Estimate on Kerr Black Hole Backgrounds 2010 Daniel Tataru
Mihai Tohaneanu
+ On open scattering channels for manifolds with ends 2014 Rainer Hempel
Olaf Post
Ricardo Weder
+ PDF Chat Logarithmic Local Energy Decay for Scalar Waves on a General Class of Asymptotically Flat Spacetimes 2016 Georgios Moschidis
+ PDF Chat Stability of stationary equivariant wave maps from the hyperbolic plane 2017 Andrew Lawrie
Sung‐Jin Oh
Sohrab Shahshahani
+ Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials 2008 Ovidiu Costin
Wilhelm Schlag
Wolfgang Staubach
S. Tanveer
+ A spectral mapping theorem for perturbed Ornstein–Uhlenbeck operators on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2015 Roland Donninger
Birgit Schörkhuber
+ Blowup stability at optimal regularity for the critical wave equation 2020 Roland Donninger
Ziping Rao