A new function associated with the prime factors of (ⁿ_{𝑘})

Type: Article

Publication Date: 1974-01-01

Citations: 10

DOI: https://doi.org/10.1090/s0025-5718-1974-0337732-2

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the least integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="greater-than k plus 1"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">&gt; k + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> so that all the prime factors of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartBinomialOrMatrix g left-parenthesis k right-parenthesis Choose k EndBinomialOrMatrix"> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtable rowspacing="4pt" columnspacing="1em"> <mml:mtr> <mml:mtd> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>k</mml:mi> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left ( {\begin {array}{*{20}{c}} {g(k)} \\ k \\ \end {array} } \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are greater than <italic>k</italic>. The irregular behavior of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is studied, obtaining the following bounds: <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k Superscript 1 plus c Baseline greater-than g left-parenthesis k right-parenthesis greater-than exp left-parenthesis k left-parenthesis 1 plus o left-parenthesis 1 right-parenthesis right-parenthesis right-parenthesis period"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>k</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mi>exp</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{k^{1 + c}} &gt; g(k) &gt; \exp \,(k(1 + o(1))).</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Numerical values obtained for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k less-than-over-equals 52"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≦<!-- ≦ --></mml:mo> <mml:mn>52</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k \leqq 52</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are listed.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ On the greatest prime factor of (𝑎𝑏+1)(𝑎𝑐+1) 2002 Pietro Corvaja
Umberto Zannier
+ On a problem of Chen and Liu concerning the prime power factorization of 𝑛! 2013 Johannes F. Morgenbesser
Thomas Stoll
+ PDF Chat New primes of the form 𝑘⋅2ⁿ+1 1979 Robert Baillie
+ PDF Chat On the prime factors of (²ⁿ_{𝑛}) 1975 Péter L. Erdős
R. L. Graham
Imre Z. Ruzsa
E. G. Straus
+ On strings of consecutive integers with a distinct number of prime factors 2008 Jean-Marie De Koninck
John Friedlander
Florian Luca
+ PDF Chat A method of tabulating the number-theoretic function 𝑔(𝑘) 1992 Renate Scheidler
Hugh C. Williams
+ PDF Chat Some new primes of the form 𝑘⋅2ⁿ+1 1977 G. Matthew
Hywel C Williams
+ On the numbers 𝑛 relatively prime to Ω(𝑛)-𝜔(𝑛) 2022 Yuchen Ding
+ PDF Chat The largest prime dividing the maximal order of an element of 𝑆_{𝑛} 1995 Jon Grantham
+ PDF Chat Approximating the number of integers free of large prime factors 1997 Simon C. Hunter
Jonathan Sorenson
+ PDF Chat Primes of the form 𝑛!±1 and 2⋅3⋅5⋯𝑝±1 1982 Joe Buhler
Richard E. Crandall
M. A. Penk
+ PDF Chat On integers free of large prime factors 1986 Adolf Hildebrand
Gérald Tenenbaum
+ PDF Chat Some prime numbers of the forms 2𝐴3ⁿ+1 and 2𝐴3ⁿ-1 1972 Hywel C Williams
C. R. Zarnke
+ Bounds for the first several prime character nonresidues 2016 Paul Pollack
+ On integers of the form 𝑘2ⁿ+1 2000 Yong-Gao Chen
+ PDF Chat A 𝑝+1 method of factoring 1982 Hywel C Williams
+ Approximating the number of integers without large prime factors 2005 Koji Suzuki
+ PDF Chat Some very large primes of the form 𝑘⋅2^{𝑚}+1 1980 Gordon V. Cormack
Hywel C Williams
+ PDF Chat A factor of 𝐹₁₇ 1980 Gary B. Gostin
+ PDF Chat Computing 𝜋(𝑥): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method 1996 Marc Deléglise
Joël Rivat