A mildly exponential approximation algorithm for the permanent

Type: Article

Publication Date: 1992-01-01

Citations: 13

DOI: https://doi.org/10.1109/sfcs.1992.267759

Similar Works

Action Title Year Authors
+ A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries 2000 Mark Jerrum
Eric Vigoda
+ A mildly exponential approximation algorithm for the permanent 1996 M. Jerrum
U. Vazirani
+ PDF Chat A deterministic approximation algorithm for computing the permanent of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:math> matrix 2010 David Gamarnik
Dmitriy Katz
+ Probabilistic and Deterministic Approximations of the Permanent 1999 Avi Wigderson
+ A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries 2001 Mark Jerrum
Alistair Sinclair
Eric Vigoda
+ A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries 2004 Mark Jerrum
Alistair Sinclair
Eric Vigoda
+ A Monte-Carlo Algorithm for Estimating the Permanent 1993 Narendra Karmarkar
Richard M. Karp
Richard Lipton
László Lovász
Michael Luby
+ A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents 2000 Nathan Linial
Alex Samorodnitsky
Avi Wigderson
+ An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix 2004 Martin FĂĽrer
Shiva Prasad Kasiviswanathan
+ An upper bound for permanents of nonnegative matrices 2006 Alex Samorodnitsky
+ An approximation algorithm for computing the permanent 1980 Leslie M. Goldschlager
+ An upper bound for the permanent of (0,1)-matrices 2003 Heng Liang
Fengshan Bai
+ The Computational Complexity of Computing the Permanent of a Matrix 2003 Craig Alan Feinstein
+ A Deterministic Approximation Algorithm for Computing a Permanent of a 0,1 matrix 2007 David Gamarnik
Dmitriy Katz
+ An Upper Bound for the Permanent of a 3-Dimensional (0, 1)-Matrix 1987 Stephen J. Dow
Peter M. Gibson
+ A Permanent Algorithm with exp[Ω (n ^{1/3}/2 ln n )] Expected Speedup for 0-1 Matrices 2002 Bax
Franklin
+ Polynomial algorithms for computing the permanents of some matrices 1997 A. P. ILYICHEV
Grigoriy P. Kogan
V. N. Shevchenko
+ FPRAS Approximation of the Matrix Permanent in Practice 2020 James C. Newman
+ PDF Chat A Tight Analysis of Bethe Approximation for Permanent 2019 Nima Anari
Alireza Rezaei
+ PDF Chat Computing sparse permanents faster 2005 Rocco A. Servedio
Andrew Wan