Reflectionless Measures and the Mattila-Melnikov-Verdera Uniform Rectifiability Theorem

Type: Book-Chapter

Publication Date: 2014-01-01

Citations: 7

DOI: https://doi.org/10.1007/978-3-319-09477-9_15

Locations

  • Lecture notes in mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Reflectionless measures and the Mattila-Melnikov-Verdera uniform rectifiability theorem 2013 Benjamin Jaye
Fëdor Nazarov
+ PDF Chat On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1 2014 Fëdor Nazarov
Alexander Volberg
Xavier Tolsa
+ On the uniform rectifiability of AD regular measures with bounded Riesz transform operator: the case of codimension 1 2012 Fëdor Nazarov
Xavier Tolsa
Alexander Volberg
+ On the uniform rectifiability of AD regular measures with bounded Riesz transform operator: the case of codimension 1 2012 Fëdor Nazarov
Xavier Tolsa
Alexander Volberg
+ Variation for the Riesz transform and uniform rectifiability 2011 Albert Mas Blesa
Xavier Tolsa
+ PDF Chat Variation for the Riesz transform and uniform rectifiability 2014 Albert Mas Blesa
Xavier Tolsa
+ Uniform Rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in $L^p$ implies uniform rectifiability 2015 Steve Hofmann
José María Martell
+ Variation for the Riesz transform and uniform rectifiability 2011 Albert Mas Blesa
Xavier Tolsa
+ Stationary measures and rectifiability 2003 Roger Moser
+ Characterization of rectifiability via Lusin type approximation 2021 Andrea Marchese
Andrea Merlo
+ Generalized rectifiability of measures and the identification problem 2018 Matthew Badger
+ PDF Chat Characterization of rectifiability via Lusin-type approximation 2024 Andrea Marchese
Andrea Merlo
+ PDF Chat Uniform Rectifiability and Harmonic Measure III: Riesz Transform Bounds Imply Uniform Rectifiability of Boundaries of 1-sided NTA Domains 2013 Steve Hofmann
José María Martell
Svitlana Mayboroda
+ A square function involving the center of mass and rectifiability 2019 Michele Villa
+ PDF Chat The weak-A∞ property of harmonic and p-harmonic measures implies uniform rectifiability 2017 Steve Hofmann
Le Dinh Long
José María Martell
Kaj Nyström
+ Generalized rectifiability of measures and the identification problem 2018 Matthew Badger
+ Rectifiability of measures and the $\beta_p$ coefficients 2017 Xavier Tolsa
+ PDF Chat Rectifiability of measures and the $\beta_p$ coefficients 2019 Xavier Tolsa
+ Rectifiability; a survey 2021 Pertti Mattila
+ Rectifiability; a survey 2021 Pertti Mattila