Factoring the adjoint and maximal Cohen-Macaulay modules over the generic determinant

Type: Article

Publication Date: 2007-08-01

Citations: 9

DOI: https://doi.org/10.1353/ajm.2007.0022

Abstract

A question of Bergman asks whether the adjoint of the generic square matrix over a field can be factored nontrivially as a product of square matrices. We show that such factorizations indeed exist over any coefficient ring when the matrix has even size. Establishing a correspondence between such factorizations and extensions of maximal Cohen–Macaulay modules over the generic determinant, we exhibit all factorizations where one of the factors has determinant equal to the generic determinant. The classification shows not only that the Cohen–Macaulay representation theory of the generic determinant is wild in the tame-wild dichotomy, but that it is quite wild: even in rank two, the isomorphism classes cannot be parametrized by a finite-dimensional variety over the coefficients. We further relate the factorization problem to the multiplicative structure of the Ext–algebra of the two nontrivial rank-one maximal Cohen–Macaulay modules and determine it completely.

Locations

  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • TSpace (University of Toronto) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Factoring the Adjoint and Maximal Cohen--Macaulay Modules over the Generic Determinant 2005 Ragnar-Olaf Buchweitz
Graham Leuschke
+ The Jacobian Conjecture 2007 Susumu Oda
+ The two-dimensional Jacobian Conjecture and unique factorization 2016 Vered Moskowicz
+ The two-dimensional Jacobian Conjecture and unique factorization 2016 Vered Moskowicz
+ Matrix factorizations with more than two factors 2021 Tim Tribone
+ Trace Rings of Generic Matrices are Cohen-Macaulay 1989 Michel Van den Bergh
+ PDF Chat PRESENTING MATRICES OF MAXIMAL COHEN-MACAULAY MODULES 2007 Ki-Suk Lee
+ PDF Chat Indecomposable p-algebras and Galois subfields in generic abelian crossed products 2008 Kelly McKinnie
+ Non-Cohen–Macaulay unique factorization domains in small dimensions 2010 Agustı́n Marcelo
Peter Schenzel
+ PDF Chat Non-commutative desingularization of determinantal varieties I 2010 Ragnar-Olaf Buchweitz
Graham Leuschke
Michel Van den Bergh
+ The Frobenius Complexity of a Local Ring of Prime Characteristic 2014 Florian Enescu
Yongwei Yao
+ PDF Chat Higher-dimensional module factorizations and complete intersections 2025 Xiao-Wu Chen
+ The Frobenius complexity of a local ring of prime characteristic 2016 Florian Enescu
Yongwei Yao
+ Congruence modules and the Wiles-Lenstra-Diamond numerical criterion in higher codimensions 2022 Srikanth B. Iyengar
Chandrashekhar Khare
Jeffrey Manning
+ PDF Chat Tensor products of $d$-fold matrix factorizations 2024 Richie Sheng
Tim Tribone
+ The Lafforgue variety and irreducibility of induced representations 2022 Kostas I. Psaromiligkos
+ The canonical trace of determinantal rings 2022 Antonino Ficarra
Jürgen Herzog
Dumitru I. Stamate
Vijaylaxmi Trivedi
+ Equigenerated Gorenstein ideals of codimension three 2020 Dayane Lira
Zaqueu Ramos
Aron Simis
+ PDF Chat Trace rings of generic matrices are Cohen-Macaulay 1989 Michel Van den Bergh
+ The ring of generic matrices 2002 Edward Formanek

Works Cited by This (15)

Action Title Year Authors
+ PDF Chat Note on direct summands of modules 1967 Takehiko Miyata
+ PDF Chat Commutative algebra with a view toward algebraic geometry 1996 David Eisenbud
+ PDF Chat Support varieties and cohomology over complete intersections 2000 Luchézar L. Avramov
Ragnar-Olaf Buchweitz
+ PDF Chat Cohen-Macaulay modules on hypersurface singularities II 1987 Ragnar-Olaf Buchweitz
Gert–Martin Greuel
Frank–Olaf Schreyer
+ PDF Chat Homological algebra on a complete intersection, with an application to group representations 1980 David Eisenbud
+ PDF Chat Initial algebras of determinantal rings, Cohen-Macaulay and Ulrich ideals 2005 Winfried Bruns
Tim Römer
Attila Wiebe
+ PDF Chat Can one factor the classical adjoint of a generic matrix? 2006 George M. Bergman
+ Gröbner bases and multiplicity of determinantal and pfaffian ideals 1992 Jürgen Herzog
NgôViêt Trung
+ Rank 2 Cohen–Macaulay modules over singularities of type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msubsup><mml:mi>x</mml:mi><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:msubsup><mml:mo>+</mml:mo><mml:msubsup><mml:mi>x</mml:mi><mml:mn>2</mml:mn><mml:mn>3</mml:mn></mml:msubsup><mml:mo>+</mml:mo><mml:msubsup><mml:mi>x</mml:mi><mml:mn>3</mml:mn><mml:mn>3</mml:mn></mml:msubsup><mml:mo>+</mml:mo><mml:msubsup><mml:mi>x</mml:mi><mml:mn>4</mml:mn><mml… 2005 Corina Baciu
Viviana Ene
Gerhard Pfister
Daniel Popescu
+ PDF Chat Deformation theory of rank one maximal Cohen–Macaulay modules on hypersurface singularities and the Scandinavian complex 2004 Runar Ile