From ballistic deposition to the Kardar-Parisi-Zhang equation through a limiting procedure

Type: Article

Publication Date: 1998-07-01

Citations: 22

DOI: https://doi.org/10.1103/physreve.58.700

Abstract

We show a direct connection between the ballistic deposition and the Kardar-Parisi-Zhang (KPZ) equation. We derive the KPZ equation from the ballistic deposition models, using an important limiting procedure. The cellular automaton rule is transformed into an integrable difference-difference equation through the limiting procedure. By applying the perturbation method to the difference-difference equation, the difference-difference equation is reduced to the KPZ equation through the Burgers equation. We apply the procedure to several types of ballistic deposition models.

Locations

  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics - View
  • Shizuoka University Repository (Shizuoka University) - View - PDF

Similar Works

Action Title Year Authors
+ What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation? 2004 Eytan Katzav
Moshe Schwartz
+ PDF Chat Review on Relationship Between the Universality Class of the Kardar-Parisi-Zhang Equation and the Ballistic Deposition Model 2021 Okhunjon Sayfidinov
Gabriella Bognár
+ PDF Chat Kinetic roughening model with opposite Kardar-Parisi-Zhang nonlinearities 2001 T. J. da Silva
J. G. Moreira
+ PDF Chat Generalized discretization of the Kardar-Parisi-Zhang equation 2005 R. C. Buceta
+ From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class 2019 Waldenor P. Gomes
André L. A. Penna
Fernando A. Oliveira
+ Long-range temporal correlations in the Kardar–Parisi–Zhang growth: numerical simulations 2016 Tianshu Song
Hui Xia
+ Universality and corrections to scaling in the ballistic deposition model 2001 F. D. A. Aarão Reis
+ PDF Chat Coarse-grained approach for universality classification of discrete models 2012 R. C. Buceta
D. Hansmann
+ Recent developments on the Kardar–Parisi–Zhang surface-growth equation 2010 Horacio S. Wio
Carlos Escudero
Jorge A. Revelli
Roberto R. Deza
Marta Sanchez de La Lama
+ PDF Chat Exact solutions of a restricted ballistic deposition model on a one-dimensional staircase 1995 Hyunggyu Park
Meesoon Ha
In-mook Kim
+ PDF Chat Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang interface 2010 Konstantin Khanin
Sergei Nechaev
Gleb Oshanin
Andreĭ Sobolevskiĭ
Oleg A. Vasilyev
+ Microscopic derivation of Kardar-Parisi-Zhang Equation 1996 Lorenzo Bertini
+ Determination of the Kardar–Parisi–Zhang equation from experimental data with a small number of configurations 2013 André Telles Campos
T. M. Rocha Filho
+ PDF Chat Beyond the typical fluctuations : a journey to the large deviations in the Kardar-Parisi-Zhang growth model 2019 Alexandre Krajenbrink
+ PDF Chat A discrete method to study stochastic growth equations: a cellular automata perspective 2007 T. G. Mattos
J. G. Moreira
A. P. F. Atman
+ The Kardar-Parisi-Zhang equation 1998 Alberto Pimpinelli
Jacques Villain
+ Large-scale simulations of ballistic deposition: The approach to asymptotic scaling 2011 Bahman Farnudi
Dimitri D. Vvedensky
+ On The Numerical Solution of the Nonlinear Stochastic Kadar-Parisi-Zhang Equation with Reduced Differential Transform Method 2014 Olusola Kolebaje
Oluwole Emmanuel Oyewande
+ PDF Chat Classification of KPZQ and BDP Models by Multiaffine Analysis 2004 Hiroaki Katsuragi
Haruo Honjo
+ The Kardar-Parisi-Zhang exponents for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si72.svg"><mml:mrow><mml:mn>2</mml:mn><mml:mo linebreak="badbreak">+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> dimensions 2021 Márcio S. Gomes-Filho
André L. A. Penna
Fernando A. Oliveira