Multipole representation of the Fermi operator with application to the electronic structure analysis of metallic systems

Type: Article

Publication Date: 2009-03-30

Citations: 32

DOI: https://doi.org/10.1103/physrevb.79.115133

Abstract

We propose a multipole representation of the Fermi-Dirac function and the Fermi operator and use this representation to develop algorithms for electronic structure analysis of metallic systems. The algorithm is quite simple and efficient. Its computational cost scales logarithmically with $\ensuremath{\beta}\ensuremath{\Delta}ϵ$ where $\ensuremath{\beta}$ is the inverse temperature and $\ensuremath{\Delta}ϵ$ is the width of the spectrum of the discretized Hamiltonian matrix.

Locations

  • arXiv (Cornell University) - View - PDF
  • DukeSpace (Duke University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat An efficient and accurate decomposition of the Fermi operator 2008 Michele Ceriotti
Thomas D. Kühne
Michele Parrinello
+ An efficient and accurate decomposition of the Fermi operator 2008 Michele Ceriotti
Thomas Kuehne
Michele Parrinello
+ Computation of Fermi-Dirac functions 1992 A. I. Litvin
S. D. Simonzhenkov
Z. Lerman
+ The computation of the Fermi-Dirac functions 1968 N. N. Kalitkin
+ Unified treatment for accurate and fast evaluation of the Fermi-Dirac functions 2010 Гусейнов
Mamedov
+ Numerical calculation of the Fermi-Dirac integral 2006 Jesus M Saenz
+ PDF Chat Pole-Based approximation of the Fermi-Dirac function 2009 Lin Lin
Jianfeng Lu
Lexing Ying
E Weinan
+ A robust solver for wavefunction-based Density Functional Theory calculations 2021 Jean‐Luc Fattebert
+ PDF Chat Revisiting the Fermi Surface in Density Functional Theory 2016 Mukunda P. Das
Frederick Green
+ PDF Chat A Hybrid Approach to Fermi Operator Expansion 2009 Michele Ceriotti
Thomas D. Kühne
Michele Parrinello
George Maroulis
Theodore E. Simos
+ PDF Chat Fast method for force computations in electronic structure calculations 2003 Nicholas Choly
Efthimios Kaxiras
+ InvFD, an OCTAVE routine for the numerical inversion of the Fermi-Dirac integral 2021 N. Mohankumar
A. Natarajan
+ An analytical approximation for the Fermi-Dirac integral 1981 X. Aymerich
F. Serra-Mestres
Javier Millán
+ High-order finite element method for atomic structure calculations 2023 Ondřej Čertı́k
John E. Pask
Isuru Fernando
Rohit Goswami
N. Sukumar
L. A. Collins
Gianmarco Manzini
Jiří Vackář
+ PDF Chat A Simple and Accurate Method for the Calculation of Generalized Fermi Functions 1998 Josep M. Aparicio
+ The grid-based Thomas-Fermi-Amaldi equation with molecular cusp conditions 2005 Kim Min Sung
Youn Sung-Kie
Kang Jeung Ku
+ Linear-scaling electronic structure theory: Electronic temperature in the Kernel Polynomial Method 2017 Eunan J. McEniry
Ralf Drautz
+ O(N^2) First Principle Electronic Structure Calculation: Finite Element Methods with Multigrid Acceleration 2001 Peihong Zhang
Vincent H. Crespi
+ PDF Chat Efficient Temperature-Dependent Green’s Functions Methods for Realistic Systems: Compact Grids for Orthogonal Polynomial Transforms 2016 Alexei A. Kananenka
Jordan J. Phillips
Dominika Zgid
+ Computing the Feynman-Kac formula efficiently with multilevel Monte Carlo 2014 Robert N. Gantner
Stefan Pauli
Peter Arbenz