On the density of integers of the form 2 k + p in arithmetic progressions

Type: Article

Publication Date: 2010-01-01

Citations: 5

DOI: https://doi.org/10.1007/s10114-010-8013-y

Locations

  • Acta Mathematica Sinica English Series - View

Similar Works

Action Title Year Authors
+ On the Density of Integers of the Form 2^k+ p in Arithmetic Progressions 2010 Xue
Gong
Sun
+ On the Density of the k-Free Integers 1969 R. L. Duncan
+ PDF Chat On the density of some sequences of integers 1948 P. Erdős
+ On the density of certain sequences of integers 2022 I. Kátai
J. Mogyoródi
+ On the density of certain sequences of integers 1935 A. S. Besicovitch
+ On the arithmetical density of the sum of two sequences one of which forms a basis for the integers 1935 P. Erdős
+ On sequences of positive integers containing arithmetical progressions 2005 Tibor Šalát
Jana Tomanová
+ On the density of certain sequences of integers. 1955 A. Rényi
+ On the Schnirelmann Density of the k-Free Integers 1977 P. H. Diananda
M. V. Subbarao
+ On the distribution of k-free integers 2014 H.-Q. Liu
+ On the distribution of $$({\varvec{k, r}})$$-integer in an arithmetic progression 2021 Teerapat Srichan
+ PDF Chat On sets of integers containing k elements in arithmetic progression 1975 Endre Szemerédi
+ On the Schnirelmann Density of M-Free Integers 1989 V. Prasad
M. V. S. Bhramarambica
+ On the existence of prime numbers in arithmetic progressions 1967 Zen'ichirô Koshiba
Saburô Uchiyama
+ On prime numbers in an arithmetical progression 1958 Stanisław Knapowski
+ On the Asymptotic Density of the k-Free Integers 1966 H. M. Stark
+ PDF Chat On the Number of the Primes in an Arithmetic Progression 1951 Tikao Tatuzawa
+ A note on the distribution of primes in arithmetic progressions 1972 Thomas Moore
+ On the Distribution of Values of Euler's Function over Integers in Arithmetic Progressions 2017 Feng
+ On the Schnirelman density of the K-free integers(Distribution of values of arithmetic functions) 1984 M. V. Subbarao